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Numerical Study of Stable Crack Growth

W. BROCKS! , H.-H. ERBE2 & H. YUAN!

ABSTRACT Stable crack growth under incremental theory of
plasticity and plane stress conditions is investigated by the finite
element (FE) method simulating experimental tests on compact
tension (CT) and center cracked tension (CCT) specimens of the
same material. Resistance curves of J, CTOA and CTOD from the
different specimens are discussed with respect to their geometry
dependencies. Continuing previous work, the possibility of utilizing
the near field integrals, like that proposed by ATLURI and co—
workers, for ductile fracture is analyzed further. The independence of
the near field J-integral on the specimen geometries and its limi—
tations are discussed.

INTRODUCTION

Since several years, stable crack growth has been an important, but still
unsolved problem in nonlinear fracture mechanics, see HUTCHINSON [1].
Numerical simulations are often employed to study the phenomena of crack
advance and to analyze the applications and limitations of commonly used
fracture parameter, such as J-integral or CTOD and to introduce new ones.
However, most investigations were restricted to compact specimens only,
see €. ¢. [2, 3], so that any influences of the specimen geometry cannot be
studied. Thus, it appears necessary to analyze different types of specimens
in the same way.

In the present paper, compact specimens as well as a center cracked
panel of the same material but different sizes and thicknesses are investi-
gated by elastic—plastic finite element calculations. Experimental tests are
simulated numerically to study the dependencies of various fracture para-
meters, such as J-integral, crack tip opening angle (CTOA) and crack tip
opening displacement (CTOD), on the specimen geometry.
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Furthermore, the possibility of utilizing the incremental integral pro-
posed by ATLURI and coworkers, see BRUST et al. [4], to overcome the limi-
tations of J controlled crack growth is discussed.

INVESTIGATED PROBLEMS

Experimental tests by SCHWALBE & HELLMANN [5] bn two compact ten-
sion (CT) specimens and one center cracked tension (CCT) specimen of an
aluminum 2024 T351, see Table 1, have been simulated numerically. The FE
program by YUAN [6] bases on the incremental theory of plasticity with
VON MISES yield condition and isotropic hardening. Crack extension is
modeled by the node release technique and controlled by experimental load
line displacement records. The calculations assume plane stress conditions,
as this yielded the best fits to the experimental load vs. load line displace-
ment curves. :

The FE mesh at the crack tip is the same for all three specimens. It-
contains no singular elements. The details of the mesh refinement are shown
in Figure 1. The element length equals 0.25 mm in the whole region of the
propagating crack, as numerical studies have shown that a further refine-
ment does not much influence the calculated parameters, see BROCKS &
YUAN [3].

In order to study the incremental integral proposed by ATLURI et al.,
several integration contours have been defined, see Figure 2. The contour
I'y;, is directly located in the crack tip field and moveés with the tip. It has a
size of two element lengths, i.e. 0.5 x 0.8 mm. The contour I';, lies in the far
field where the J integral has become numerically path-in ependent, even
during large crack extensions. The contours I’/ to I', are called the "near
field" paths. ’

NUMERICAL RESULTS AND DISCUSSION

As any material parameter must, by definition, be independent on the speci-
men geometry of a structure, one has to search for a mechanical quantity
which, for a given amount of crack growth Aa, will not vary between the
specimens. Two basic concepts of ductile crack growth relate to either crack
tip displacements (CTOA, CTOD) or energy release (J-integral).

SCHWALBE & HELLMANN [5] have introduced the crack tip opening
displacement §; measured on the specimen surface over a gage length of
5mm at the initial- crack tip. Figure 3 shows that the results of the
numerical simulations agree quite well with their experimental data. The
CTOD does- apparently not depend on the specimen shape but rather
strongly on the specimen thickness. It is obvious from the viewpoint of
continuum mechanics that &, should be larger for a thin specimen than for
thick one under the same_loa?i line displacement. '

Though the crack profiles of the three specimens, see Figﬁre 4, vary due
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to different sizes and different loading configurations, i.e. bending or
tension, the angle at the current crack tip, CTOA, is less affected. Thus, it
appears not to depend on the specimen geometry so much, see Figure 5.

Many investigators have shown that J control of ductile crack growth is
restricted to a rather small interval, see SHIH et al. [2] and SCHWALBE &
HELLMANN [5]. The reason is that J loses its two constitutive properties of
being path-independent and of being the intensity factor of the tip stress
and strain field. Figure 6 shows that it becomes strongly path dependent as
soon as crack growth initiates and may take any value between 0 and Jg.
The numerically calculated far field integral J; corresponds to the experi-
mental J-integral which is determined from t}{e load vs. load line displace-
ment curve. Thus, it represents the external work applied to the specimen
some part of which is dissipated into plastic deformations and the other into
surface energy necessary to propagate the crack. Now the specimen geo-
metry determines the possible amount of plastic deformation, which is called
its "plastic constraint". It is obvious that the resistance curves of J¢r be-
come dependent on the shape and loading configurations of the speciméens as
Figure 7 shows. Moreover, GRIFFITH's energy considerations fail in the case
of ductile crack growth since no finite amount of J,, is left in the limit of a
vanishing radius of the integration contour, see Figure 6.

ATLURI and his coworkers tried to overcome this well known restriction
of J-integral by introducing some new incremental integral, see [4]. MORAN
& SHIH [7] have already pointed out that this integral is actually nothing
else than AJ, ;. Figure 7 does indeed show that the near field integral is less
influenced by ‘the specimen geometry, supporting the idea that it might be
suited as a controlling parameter beyond the limitations of J. However, J,
is a rather arbitrary and artificial value which depends on the height h o%
any tube shaped integration contour and does not approach a finite limit,
see Figure 8. Thus, necessarily, the dependence on the geometry must
diminish with a vanishing value.

CONCLUSIONS

Stable crack growth of three different specimen shapes and sizes has been
analyzed by elastic-plastic FE calculations. The numerical results agreed
quite well with experimental data.

The CTOD resistance curves do not depend on the specimen shape very
much but on the thickness of the specimen.

The CTOA curves are less dependent on the geometry but rather sensi-
tive to the procedure of calculation. Difficulties will also arise in measuring
CTOA experimentally.

The numerical studies revealed that J loses its path-independence after
very little crack extension. Calculated in the near field, J 7 approaches to
zero for decreasing distance of the integration contour to the crack tip. No
evidences have been found to utilize any near field integral as a parameter
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controlling ductile crack growth.

8

(3]

References

Hutchinson, J. W., J. Appl. Mechanics, Vol. 50, 1983, pp. 1042-1051.
Shih, C. F., deLorenzi, H. G. & Andrews, W. R., in "Elastic-Plastic
Fracture", ed by J. D. Landes, J. A. Begley & G. A. Clarke, ASTM
STP 668, 1979, pp 65-120.

Brocks, W. & Yuan, H., "Numerical Investigations on the significance
of J for large stable crack growth", to appear in Engineering Fracture
Mechanics.

Brust, F. W., Nishioka, S. N., Atluri, S. N. & Nakagaki, M. Eng.
Fracture Mech., Vol. 22, 1985, pp. 1079-1103.

Schwalbe, K.-H. & Hellmann, D., "Correlation of stable crack growth
with J-integral and crack tip opening displacement, effects of geometry,
size, and material", GKSS 84/E/37, GKSS-Forschungszentrum Geesth
acht GmbH, Geesthacht, 1984.

Yuan, H. "Theoretical research and calculative analysis of J-integral in
nonlinear fracture mechanics", Master Thesis (in Chinese), Zhejiang
University, Hangzhou, China, 1984.

Moran, B. & Shih, C. F., " Crack tip and associated domain integrals
from momentum and energy balance", Report ONR 0365/2, Brown
University, Providence, 1986.

Acknowledgement: This work was supported by the Deutsche For—
schungsgemeinschaft (DFG) under contract number Br 521/2-1. The
authors thank Dr. D. Hellmann of GKSS for the experimental data.

Table 1- Geometries of the investigated specimens (Material: Aluminum.
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2024 T 351)
No |Specimen | W(mm) | B(mm) a,(mm) [ Aay,, (mm)
1 CT 50 5. 25.1 14.44
2 CT 100 20. 71. 17.15
3 CCT 50 5. 25.3 8.58
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Figure 1 FE mesh at the crack
tip
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Figure 2 Integration contours
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Figure 7 J resistance curves, Figure 8 Path dependency of J
near and far field

210



