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GENERALIZATION OF THE IMPROVED MODIFIED CRACK CLOSURE INTEGRAL
METHOD TO SURFACE CRACK PROBLEMS

F.-G.BUCHHOLZ* and H.GREBNER"

The improved modified crack closure integral method has proved to be a
numerically highly effective method for the fracture analysis of plane, linear
elastic crack problems. It is shown that this method can be generalized for
covering 3D-problems involving locally defined energy release rates varying
along a curved crack front. This is demonstrated by the fracture analysis of
a semi-elliptical surface crack in a plate in tension. The calculated stress-
intensity factor distributions along the crack front show reasonable to good
agreement with reference solutions with respect to the constant strain
_ or the coarse linear strain element discretisation under consideration,
respectively.

INTRODUCTION

From the various FE-procedures available for the linear elastic fracture analysis of plane crack
problems the modified crack closure integral method given by RYBICKI and KANNINEN
(1) (MCCI-method) has proved to be a numerically highly effective procedure. The following
investigation will show that by defining an effective width for each nodal point force at the crack
front, corresponding to the unit thickness inherent in plane problems, the CCI-methods can be
generalized to 3D-crack problems. Thereby their main advantage of delivering simultaneously
the separated energy release rates Gi(a), i=LILIII in case of mixed-mode conditions at the
crack tip, remains unaffected.

CRACK CLOSURE-AND IMPROVED MODIFIED CRACK CLOSURE METHOD

For the FE-analysis of crack problems IRWIN’s well known analytical crack closure integral
relation can be written in the following FE-representation

}_ 1
t 2Aa

holding for the constant strain element (CSE)-discretisation as given in Fig. la. Equation (1)

Gi(a+ Aa/2) = (Fy,i(a)Auy;_1(a+ Aa)) , (1)
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delivers the energy release rate Gy(a+ Aa/2) on the basis of the work to be done by the nodal
point force Fy ;(a) against the relative nodal point displacement Au,;_,(a + Aa) in order to
close the crack by Aa again (Fig. 1a). For plane problems t is denoting the unit thickness
of the specimen. It is emphazised that Eq. (1) is holding numerically exact for the actual
CSE-discretisation under consideration for Aa 3> 0. Still the disadvantage of this CCI-method
is the requirement of two FE-calculations with different crack lengths a and a + Aa to get one
Gi(a + Aa/2)-value. This disadvantage can be avoided by referring to the following formula
of the modified CCI-method (MCCI- meth.)

Gia) = 7 Jim, ——(Fyi(a)Auyi:(a) @

given by RYBICKI and KANNINEN (1) for plane CSE-discretisations as shown in Fig. la.
By this method the numerical effort is reduced to one half, because only one FE-calculation
is required for obtaining one Gy(a)-value for a given crack length a. Both methods have been
improved by extensions in order to be applicable in connection with the numerically more
effective linear strain element (LSE)-discretisations corresponding to Fig. 1b by BUCHHOLZ
(2), KRISHNAMURTY, DATTAGURU et al (3) and RAJU (4). If Egs. (1) and (2) should
apply to the surface-cracked plate of Fig. 2, the plane unit thickness ¢ has to be replaced
by an effective width Aw;(a, p;) correlated to each nodal point force F; ;(a,;) at the crack
front. The effective widths are governed by the shape functions of the elements in use, and
for the CSE-discretisation of the surface-cracked plate (Fig. 3a, b) one obtaines Aw;(a, ;) =
(wi() +wr())/2, with w}® and w]® being the relevant widths of the adjacent left- and right-
hand side elements, respectively. In extending this approach to LSE- discretisations as given
in Figs. 1b and 5a, b the follwing formula can be derived for the improved CCI-method

1 F, i(a,p;
Gi(a+Aa/2,p;) =57 (—AﬁAuz,;_a(a+ Aa, pj)+

F:i a, ;
+K;;Z(T‘:’%Au,,;_l(a+Aa,<pj)) ; 3)

In Eq. (3) Awi(a,p;), k = i,i+ 1 is given by (wl() + wi())/6 or by 2w /3, if ¢; is indi-

cating a connection line between adjacent LS-elements or a centre line through the elements,
respectively.

SEMI-ELLIPTICAL SURFACE CRACK IN A PLATE

For a ratio a/t = 0.4 of the surface-cracked plate (Fig.2) the normalized stress intensity
factor distribution along the crack front is plotted in Fig. 4. The results obtained by the
CCI- and MCCI-methods respectively (6) (K1N-2C and -1C graphs, Egs. (1), (2)) are in
reasonable agreement with RAJU and NEWMAN’s reference solution (5) (K1N-REF graph),
with respect to the CSE-discretisation as given in Figs. 3a, b.

In Fig. 6 corresponding results are plotted (K1N-2C graphs), calculated by the improved CCI-
method for the coarse isoparametric LSE-discretisation of Figs. 5a, b. The final result is given
by the dotted line, because Eq. (3) delivers Gj(a, ¢)-values which have to be converted into
Ki(a, ), considering that for 0 < 2¢/7 < 0.3 plane strain conditions (-EVZ) and for 0.7 <
2¢/T < 1.0 plane stress conditions (-ESZ) will apply approximately. For the isoparametric
LSE-discretisation of Figs. 5a, b the effective widths Awg(a, ¢;j), k = i,i+ 1, required for Eq.
(3), have to be identified by a special analysis (6) because they are affected by the distorsions
of the unstressed isoparametric LS-elements. But the results given in Figs. 4 and 6 and for a
related problem in (7) prove that the presented crack closure methods can be generalized for
covering this kind of problems.
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Fig.1la,b Num. crack closure integral methods Fig.2 Surface-cracked plate in tension
(orig. and impr. CCl-and MCCI-meth.) (c/w<0.2, ¢/l <04, a/c=0.4)
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Fig.3a,b CSE-discretisation of the plate Fig.4 Normalized stress intensity factor
(espec. modelled for a/t = 0.2 and 0.4) distribution (a/t = 0.4)
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Fig.5a,b LSE-discretisation of the plate Fig.6 Normalized stress intensity factor
(espec. modelled for a/t = 0.2 and 0.4) distribution (a/t = 0.4)
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