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FRACTURE ANALYSIS OF SINGLE AND MULTIPLE CRACK PROPA -
GATION IN A THERMALLY SHOCKED STRIP

H. -A. Bahrl), M. Kunaz), H.G. Maschkezb, F. Meissnera),
H.-J. Weissl)

For an array of parallel equidistant edge
cracks in a long strip, the time-dependent
stress intensities due to quenching have
been calculated by means of the weight
function method and the boundary element
method. The sequence of stagdes in crack
pattern formation is analysed. The patterns
derived theoretically are found to have
essential features in common with experimen-
tal ones.

INTRODUCTION

The stress field penetrating into the thermally shocked
sample provides a time-dependent energy release rate at
the cracks, which can be considered as the driving
force for crack propagation. It is reduced by mutual
unloading of neighbouring cracks progressively with
crack length. The formation of hierarchical crack pat-
terns (Fig.1) can be regarded as a result of the oppo-

sing actions of driving force and crack interaction.

Following Stahn and Kerkhof (1), Emery and Kobayashi
(2), Nemat-Nasser (3) and Bazant (4) a fracture mecha-
nical approach for the investigation of thermal shock
induced cracking was developed by Bahr and Weiss (5,6).
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The consideration of time-dependent enerdy release
rates sugdested that the experimentally observed final
crack patterns (Fig.1) may have developed stably from a
transient state of unstable crack growth initiated from
preexisting cracks.

To substantiate the previous findings, numerical
calculations have been performed for a heated 1long
strip with a single edge crack by Bahr et al. (7) or
periodically arranged edge cracks as presented in this
raper. The essential features of this two-dimensional
problem should be transferable to more complex crack
configurations.

TEMPERATURE AND STRESS FIELDS

The cracks are arranged as shown in Fig.4. They are
supposed to remain straight and thus do not influence
the heat flow. Therefore the heat flow problem is one-
dimensional, with the solution

Tixt) = -aT 2_ 2 sinpn €0S(Mpx/b - mp)

: eXP(‘M:-Xi/bﬂ-
n=1  Mn +Sinu, COS My,

(1)

The symbols b, AT , ®, k , and h denote width of the
strip, temperature difference in quenching, thermal
diffusivity, +thermal conductivity, and heat transfer
coefficient, resp. The constants M, are the positive

solutions of the equation }M‘=(hb/kycoLﬂn. Newtonian
cooling with hb/k=10 is considered. The thermal stress
component sy(xqt) in the absence of cracks would be
b
Sy t) = - B[ Thxt) = T(x,t) dx
(]
. 2)
AL (X _ 4 X _ 4
o5 3) 05( o~ 7) Tiit) dx

with E and & denoting Young’s Modulus and thermal
expansion coefficient.

CALCULATION OF STRESS INTENSITY FACTORS

For any thermal loading case an equivalent face loading
can be found which is equal but opposite to the
tractions on the prospective crack lines in the body
without cracks.
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The time-dependent stress intensity factor K, for a
single crack of lendth "a” under Mode I loadin& can be
determined by means of the weight function method:

Kelat) = }l_;? Z&Mtalx) Gy(x\t)dx ) (3)

The weight function M(a,x) was derived by Bueckner
(8) for the single edge cracked strip and has been used
here in the same way as in reference (1).

Next, the boundary element analysis code ATALANTE by
Maschke and Kuna (9) for solving two dimensional pro-
blems in linear elastic fracture mechanics has been
applied. The program is based on the direct boundary
element method (BEM), involving the free space Green’s
function and 3-noded elements of quadratic isoparame-
tric shape functions. Special boundary elements were
employed for modelling the crack tip. The stress inten-
sity factor is obtained from the BEM-solution utilizing
either the crack face displacements or the traction
values of the crack tip node (7). By a special option
of +the BEM-system, periodical structures can be trea-
ted, which is essential for analyzing multiple crack
configurations. Fig. 2 shows one of the BEM-discretiza-
tions used for the analysis of periodically arranged
cracks of two different lengths.

CRACK PROPAGATION SCENARIO

Fig.4 shows the normalized energy release rate plotted
versus crack length. Crack propagation starts as soon
as G = K{*/E exceeds a critical value ¢c and continues
as long as this condition is met. There is a critical
severity of shock, ATc , below which no cracking
occurs. Just at aT =aTe » single crack propagation is
observed, with the crack running unstably. Excess
released energy may drive the crack beyond the envelope
of the family of ‘¢ —curves (solid arrow in Fig.4).

Higher T means lower Y. -level in our normalized
plot. It is seen from Fig.4 that with increasing AT
the delay of crack initiation after shock is
diminished. As a consequence, the unstable crack paths
are shorter. Furthermore, some of those initial flaws
which are partly unloaded by the growing cracks may
still be able to start later when their Y 1increases
as the cooling goes on penetrating into the strip.

This consecutive activation of initial flaws has

been analyzed for a periodic array by means of BEM
(Fig.2):
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By variation of the crack spacing p, the minimum
spacing is found where the remaining initial flaws of
length a,=a will Jjust be able to start while they
would no dg so with lower distance. This implies 3
conditions on the energy release rates ¢; from which
a;, t and p can be determined (i=1,2 refers to the two
séts of cracks in the array):

gf(aq'az_|t,p,AT) =§C 1 (Lf)
G2 = F(ay,t,p,aT) — Moax (5)

where = follows from (4) by eliminating a, and Max
means oF /ot =0.

It is found that larger AT results in smaller P
(see inserts in Fig.4). These conditions govern the
establishment of the so-called rarking order of cracks
by combined unstable and stable crack propagation.

Once the parking order of cracks has been esta-
blished, further propagation is governed by the pene-
tration of cooling into depth. The law of Propagation
is provided by the conditions

o,l8) = ay(t) (6)
gf(a4.az,t,p|AT> :\gc, (?)

As a consequence of progressive mutual unloading of
the growing cracks, not all of them keep propagating:
There is a bifurcation-type instability with every
second crack popping off while the remaining ones are
left behind as in references (3,4). This occurs as soon
as the following condition is fulfilled

a%§4(a4lollt(plAT) :‘O] 04302_- (8)
4

The computations revealed two events of this kind for
an arbitraryly chosen AT = 2.9 aTc (see inserts of
Fig.4).

When the crack has reached a length where its energy
release rate does no more increase with time for fixed
crack length, it stops. Thus the final crack length and
the time of crack stop are determined by the conditions

pi(a4lalltlpuAT) = @Cl a"qul (9)

9

5t Gilawo,tip,aT) =0 |, ay=a,. 10)
For AT =1.6 AT one obtains a/b=0.254. More severe

shock leads to larger final crack lengths (Fig.4).
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Note that the envelope of the multiple crack g -
curves differs from that of the single crack ¢ -curves.
The calculated final crack lengths turned out to depend
non-monotonically on aT. This is compatible with the
non-monotonic dependence of retained strength on AT
as found in reference (10) (Fig.3).

The numerical results obtained for the quenched edge
cracked strip support the fracture mechanical approach
to thermal shock damage of brittle materials due to
single and multiple crack growth recently proposed in
references (5,8). It allows to draw quantitative con-
clusions concerning the dependence of damage on seve-
rity of shock, initial strength and heat transfer.
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Figure 1 Crack penetration patterns in quenched glass-—
ceramic slabs. Curtesy by G. Fischer.
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Inserts representing numerical results

Figure 4 Crack propagation scenario derived from time-
dependent energy release rate T for several »oT
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