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DAMAGE CONCEPT IN WELDMENTS

M.D.Pavisic*

Two sciantific methods today, on the problems of
deterioration and fracture of materials have been
applied: linear elastic fracture mechanics wich
starts by Griffiths /1/ considering brittle fra-
cture, and continuous damage mechanics, origina-
ted from Kachanov’s /2/ analysing creep fracture
problem. High idealized assumptions both of men-
thioned approach tried to eliminate Janson and Hu-
1t /3/ and farther Janson /4/,/5/ by himself. They
proposed a combined approach with intention to de-
scribe the interaction between a macroscopic crack
and microscopic damage in the homogenous materials.
In this paper a possibility of application of the-
se procedure to the weldments problems has been
analysed.

INTRODUCTION

A primary problem existing in the field of weldments is expre-
ssive inhomogenity in the material at the zone of welded joint.
This inhomogenity has been expressed as in the structure of
material as in important change of mechanical properties,
often at the very small space. However, this inhomogenity has
been mainly expressed to the change of the yield stres in each
zone related to the base metal.

As analysis of single cracks, located in whichever zone of wel-
ded joint, understtands the appearance of the plastic zones at

the crack tip, it will be a main difficulty to determine this
zone.
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STATEMENT OF THE PROBLEM

A thin sheet with butt weldment, transversal to the stralin dire-
ction, loaded in mode I, has been treated using the modified
Dugdale /6/ crack model according to Jansons /5/ procedure for
time-independent damage formation. Three independent and substa-
ntialy different cases are determined: /a/ the crack in the weld
metal, /b/ crack in the heat-affected zone, and /c/ crack in
base metal. However, in this worke, Tike most interesting, it
will be considered a case when the crack just in the fusion line
has been assumed /Fig. 1). To simplify the analysis, we assumed
that there was no the residual stresses from welding. A plastic
zone, wich is forming at the crack tip, will have in this case
iregulare shape by reason of menthioned structural and mecha-
nical anisotropy /before all by reason of differents yield
strengths/.

We will assume the shape of plastic zone at the crack tip I]ike
in Figure 2.

Our further consideration has been conseieyed on the possibility
of determination a mechanical properties of materials at whiche-
ver point in welded joint /in accordance with Soet and Denys /7/
papers/. The following relations introduced in this case are:

Damage : w=(A-Ag)/A ﬁ)

Stress: G = P/A (2)

Net stress: s = P/Aet (3)

and consequently: ) B s(1-w) (4)

Elasto-plastic relation, net stress-strain is assumed independe-
ntly for weld metal and heat-affected zone /see Fig, 3/.

Relation damage-net stress, is assumed like in the paper /5/.
However, by reason of menthioned inhomogenity, typical for
welding procedure, a new greatness, caled initial or technolo-
gical damage, has been introduced. This initial /technological/
damage exist independently from the external load, and is diffe-
rent for each of the three menthioned cases. It depends on the
materials nature /basic or additional/, welding procedure, thermal
treatement etc. That means that the initial /technological/ damage
is the parameter of material. We can assume that it is constant
for the assigned welding parameters.

If we denote new greatness with w;j, We can expresse it like

relation:
Wi- Emfeg (6)

979



FAILURE ANALYSIS - THEORY AND PRACTICE - ECF7

where is: e_-max. strain, € -strain at fracture in one plane pa-
rallel to the weld axis /in our case this is the fusion line/.
It has to be mentioned here, that bouth value ey and €f are
variable along the direction perpendicular to the weld axsis
/y/, as is discribed in menthioned paper /7/, on the series of
small specimens which have been cut out successively to the di-
rection of weld axsis. In our case, for y=0, wi=wi. In fact,
this relation express a measure of ductility in the materials,
whichis a very important property when the welded joints under
fracture condition has been considered. Obviously, as a value
wi is nearer to the unit a fracture conditions become more
rigorous.

Now, we shell introduce a modi fied Jansons relation without a

plastic zone: , o ,
w'sca(S); wy (7.1)
W =Co(S) + Wi (7.2)
9 ’ 9
At the zone boundary: w'= C: (5;) FWi=WoetWi (8.1)

W= Co(Sy) + Wi = Wotwi  (8:2)

Inside the zone damage is assumed to depend lTinearly on the
crack opening whit a presence of the initial damage:

W)= WhHWiKT®  (g.1)

W (L) = Wo+wi+kn () (9.2)
where are wi> Wg» k, k* and wy» w% material parameters.

Introducing relations /9.1/ and /9.2/ in expression /4/ we have:
? L) 2 2 9
&) = sy[1-wom wi-k] (101
@(x)=53[1‘“’°‘w"v‘k”lf°°)] (10.2)

We shell concider now rezulting stress distribution in the
sheet due to external Toad a_ and the stress ox acting on the
outer flanks of a crack /Fig. 4/ separeting our consideration
on two parts: a<x<b and b<x<c.

Westergards /8/ complex stress functions are used here due to
procedure indentical 1like in paper /5//which will not be
represented by reason of shortness/. Using two independent
integration procedure of stress function we get two relations
/whit integration boundaries a-b and b-c/:

a/b cos[@2)(Cw/5yV/f’]  (11.1)
b/c = cos[(W/2)(Ce/Sy)/f] (11.2)
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From this two relations we can calculate the plastic zone length
b and c, when we first calculate the crack half-opening
n*(x) and n(x) by using Westergards solution for displacement

at y-direction i
() =[ZIm Z—j('“'V)EeZ]/E

whit next conditions: z=x, y=0.

(12)

We shell concider now a possible crack instability criterion.
Using equations /9.1/ and /9.2/ we get a values w’(a) and
w(a).

As criterion for crack propagation Janson suggested the next
condition: w(a) = 1.

In our case, this condition is transformed by two in the shape:
” 9 9 2
(U(é)=w;+'¢TU6)=1—<U% (13.1)
w(a)=w°+kvl(a)=1—wa (13.2)

where 1is m3=wi. From two values got by this way, the smaller
will be vaild. 'However, a particular situation will originate
wher w; is very near /or equal/ to the unit, i.e. when a mate-
rials ‘ductility is reduced at zero practicaly, and no damage
in the material provoked by Toading. It can be represented
that the use of classical Dugdalss approach in this case is
justified.

CONCLUSIQN

The method proposed here, presents one attempt that a combined
approach of fracture mechanics and continuous damage mechanics
can be applied on the weldments problems.

Introducting a new parametar of material / wi/ and separations
of integration procedure on two independent ‘parts, would make
possible that the problems of local anisotropy and lamination
in the welded joints be practicaly overrun.
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SYMBOLS USED

w 3 damage

A 4 surface

o % stress

S =§net stress

P ﬂ]mdﬁg

€ ='strain

Co’“o’k = parameters of material

n = crack half-opening

z = complex variable

A - Function of z, derived from stress function
z = first integral of Z

Lo = imaginary part of complex function
Re = real part of complex function

E = Young’s moduls

v = Poisson’s ratio
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