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COMPUTATIONAL ESTIMATES OF STRESS INTENSITY
FACTOR FOR CRACKS IN PLATES AND SHELLS USING A
BIE METHOD

M. R. ETEMAD and C. E. TURNER*

Results generated using a BIE program to find LEFM shape
factors for semi-elliptical surface cracks in several plate and
shell cases are described. Data for nine wide plate cases with
a/c=0.3 and 0.4 and a/t= 0.5, 0.4 and 0.2, subjected to
remote uniform tensile loading are given and compared with
those in the literature. Present results were found to be within
the scatter of published data though 5-18% lower than the
well known data of Newman & Raju. Initial results for three
cracks in the circumference of cylinders subject to tension,
with a/c=0.14, a/t = 0.6, Rit=29and a/c = 0.6, a/t = 0.5
and 0.6, R/t = 11, subjected to tension are found to be in
good agreement with those of Newman & Raju. One case
with local wall bending is also given.

INTRODUCTION

The usefulness of LEFM in defect assessment of engineering components and
structures is greatly enhanced in practice if the behaviour of three-dimensional,
3D, crack problems can be predicted. This type of analysis is not always possible
and use is made of simple models involving two dimensional, 2D, idealisations
of these problems. Earlier references [1-7] have recently been complemented by a
study of cracks in otherwise axisymmetric (quasi-2D) bodies, Kumar et al [8].
Their results agree with those of [5] to within 4% and of [2] to within 10%. A
comparison of full 3D, 2D and quasi-2D results has shown the 3D results
generally to be lower, emphasising the benefit of a full 3D analysis. A detailed
comparative analysis of shape factor data for semi-elliptical surface cracks in both
plate and shell geometries from sixteen sources, e.g. Refs.1 to 4, revealed
considerable disagreement.

The boundary integral element, BIE, method is often cited as offering a solution
procedure more convenient than the 3D finite element, FE, method. Its
application to plates and shells is less favourable because of the need to maintain
reasonable aspect ratios for the elements. Nevertheless, the present work uses a
BIE analysis and is restricted to 160 elements as part of a study of whether a
sub-structure approach to cracks in tubular joints as found in offshore structures
is worth pursuing.

For surface cracks the magnitude of K varies along the crack front. Only mode 1
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(tensile opening) is considered here. These cracks are usually approximated by a
semi-elliptical form, surface length, 2c, penetration, a, with the position along the
crack front defined by the angle ¢, zero at the free surface. K is written

2

Y=F/x )/ Q where JQ =I(cos2¢+ (@/c)’sin’®) *d¢ in K=Yo [a
0

The Q factor for an ellipse is a complete elliptical integral of the second type
which can be approximated for a/c<1

Q=[ 1+1.464(aic) 1"
For a/c > 1 the same approximation is valid but with c/a replacing a/c.
Extensive results by Newman and Raju using 3D FE methods, were reported [1]
for a wide range of crack and plate geometries, including corner cracks and
surface cracks at holes, with various crack depth to thickness ratios, a/t, and
crack ellipticities, a/c. Empirical equations for F were given in [1] to fit surface
crack data from [1i] and differences of up to 5% are referred to. For a/c < or =1

F=[M1+M2(a/t)+M3(a/t)"] g fk
M1=1.13 -0.09 (a/c) and M2=0.54 + [0.89/ (0.2+(a/c))]

M3=0.5 - [1/00.65+(a/c))] + 14 [1-@c)** and g=1+[0.1+0.35(a)(1-sing)"

f=[(a/c)zcosz«.1>+sinztb]l/4 and k=[sec{ma/2b) Ja_/? ]1/2

As seen Table 1 differences are found when values for the shape factor are read
from the data tabulated in [1i] as opposed to evaluated from these equations. For
all a/c with a/t small (e.g.0.2) the differences are small but increase up to 12% for
the larger a/t values at all a/c, the equations giving a result that is larger than the
tabulated values.

An earlier comparison of all known results drawn from fourteen references was
given in [9]. For shallow surface cracks, i.e. a/t < 0.3, there was close
agreement, i.e. about 5%, between all fourteen cases regardless of the crack
ellipticity. Results for deeper cracks, however, showed considerable differences,
as much as 80%. One example from [9] is shown Fig.1. When correlated with
experimental data from brittle epoxy material, results from Raju and Newman
[10] showed the best fit.

2 - A E I

Only circumferential craks are considered here. Most published data are for axial
defects subjected to internal pressure. These include [13] using BIE. Reference
[14] compared its own FE results at the apex, ¢ = 7t/2, with those of Refs. [12]
& [13] and showed less than 8% differences for any value of a/t or a/c. At the
free surface, results from [12] were lower than those from the other two (which
continued to agree with each other) by as much as 40% for the deep crack, i.e. a/t
—0.8. In [15] empirical equations fitted to FE results for the shape factor for a
wide range of crack shapes were given. Comparison of [15] with [12] and [14]
showed differences of only 2% with BIE and 8% with FE. These equations are
the same as for the plate case, above, with & = pR/t where R is radius, except
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that for the cylinder

k={[R+RY RERD)] +1 -0.5[a%t } (wt)

where R with subscripts ‘0 or 'i' is the outer or inner radius respectively.
Circumferential semi-elliptical surface cracks were considered by Delale and
Erdogan [16], Ezzat and Erdogan [4], and Raju and Newman [3]. Refs [4] and
[16] used a line spring model and [3] a 3D FE method. In [16] axial cracks were
also considered and results were found which were some 10% higher than those
reported by [15]. This makes the results from the line spring model some 18%
higher than those in [14]. This comparison may serve as a guide for the
circumferential defect where a direct comparison between the line spring model,
FE, and BIE cannot be made based on present data. The 3D FE computations of
[3] gave results 10% lower than those of [16] for a very deep circumferential
crack , a/t =0.8, with a/c = 0.775. Comparison for depths of other shapes is
difficult. The computations [3] actually cover a very limited range of crack
shapes, particularly in the a/c sense. Besides the semi-circlular, only two other
rather small ellipticities of a/c = 0.8 and 0.6 were computed.

B. PRESENT NUMERICAL COMPUTATIONS

The basics of the BIE method used are well documented, e.g. see Refs. [17 and
18], and will not be presented here. The BIE method has been widely applied to
3D crack problems since it is generally less expensive to use than FE, one case
has already been described, [13]. The program used for the present
computations was applied earlier to thick cylindrical vessels, [19].

To evaluate the stress intensity factor several methods are available. The first two
use crack face displacements, q, evaluated for points on the crack face along a
line normal to the crack front

q=(4K/E) [Jr/2 and hence K=[(E/4) 21 ] (q//7)

where r is the distance from the crack tip and E is the elastic modulus. In Method
i direct extrapolation to r = 0.0 gives the magnitude of K. Method ii involves the
plot of q versus the square root of r. This gives a straight line passing through the
origin, the slope of which gives K. This latter method is generally consisered to
be more accurate since it does not rely on difficult extrapolation near r = 0.0.
Other methods include of course extrapolation of stresses or strains in the body
rather than of zrack face displacements, change of crack area to find the energy
release rate, contour integral evaluation or use of ele nents with nodes displaced
to introduce a half power singularity. The last two, though used elsewhere in BIE
studies, are not available on the present program but it is hoped to examine them
later.

T I
Four cracked plate (P) geometries were computed in tension (t), D with uniform
end displacement, and S with uniform end stress. W is plate width and h is plate

height. In each case a symme-ric quarter of the plate was modelled.
Case PtOD, Pt1D and Pt1S a/c = 0.333, a/t = 0.5,W/.= 128, h/r -75.6

Case Pt2D 0.4 0.4 19.2 38.4
Case Pt3D and Pt3S 0.4 0.4 5.0 5.0
Case Pt4D and Pt4S 0.4 0.2 10.0 10.0
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All meshes other than for Case 0 used a mesh with points on the edge of the
crack face lying on a line normal to the crack front. Comparison of the result for
0D and 1D showed an increase of 1.5% for 1D and all subsequent meshes used
that form. For Cases OD and 1S a comparison was made of methods i and ii for
finding K. The latter results were 4% higher and later results using method i were
increased by that amount. In Cases S uniform stress rather than uniform end
displacement was applied affecting K by +1.6% for CaselS, - 0.5% for Case3S
and no effect for 4S. The other parametric ratios of width and length to crack size
in Case 1 are not common within the existing data so other cases with geometry
nearly identical to the published data were computed. Cases 2 and 3 show a
difference of only 2% for the change in W/c and h/c.

As seen in the tabulated data, Table2, the agreement with the results of [2], not
now usually thought to be the best, is good for Cases 1D or S, quite close
(e.8.5%) for Cases 2 and 3 but less close (e.g.10%) for the shallow crack, Case
4 . A finer mesh Case 4D and S for a shallower crack, a/c = 0.4, a/t = 0.2, was
also computed but again gave results 11% below [2]. Comparison with what are
commonly taken to be the most reliable results, [1], is at the 15% (low) level
throughout. All cases are shown Fig.2 in relation to the tabulated data of [1i].

It is not possible to resolve the differences of up to 18% between the present data
and those of [1] or [10] from the few cases yet studied. In so far as even greater
differences are already quoted in the literature, see [9] and Fig. 1, doubt on the
correct value must exist. It is noted that the comparison in [9] is between several
methods of analysis, the line spring model, various versions of the alternating
method, and FE computations. The FE computations were obtained essentially
from one source, and hence comparisons with other FE (or BIE) computations
were not made. Such comparisons of different FE and a BIE method were
referred to above for axial cracks in shells, [12-15], and differences of up to 8%
for two sets of FE computations were noted, albeit differing in the one case by
only 2% from the BIE result of [13]. The present few results are not seem strong
enough to seriously challenge existing cracked

plate data particularly as the present results are low even for the shallow crack (a.t
=0.2) where the other data are coming together. The lack of agreement implies
further BIE and perhaps FE analysis is required, be it by this program using
different meshes and other refinements or a different program, before the
differences can be resolved.

3.CIRCUMFERENTIAL CRACKS IN SHELLS
i
Three configurations have been computed for cylinders with circumferential
cracks (Cc) on the outer face with applied tension (t) loads and for Case 2, in
local bending.
Only a quarter of the body was modelled, strictly implying two symmetric
cracks.

Case Cctl alc=0.14, a/t=0.5, Rit=29.1, h/c = 26.1,
Case Cct2 and 2B 0.6 0.5 11.0 19.3
Case Cct3 0.6 0.6 11.0 16.0

As seen Table 3, the result of 1.63 (inferred for method ii) for Case Cctl
compares favourably with the value 1.637 from the line spring model of [4]. To
compare with 3D FE results, the data of [3] would have to be extrapolated
grossly. Two further cases, Cct2 and Cct3 were computed, with geometric
details identical to two in [3]. Results in Table 3, show agreement with the 3D FE
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work of [3] to about 5%. For Case 2B a mesh more uniform remote from the
crack was used but the result differs only slightly. The results are some
12+o0r-4% below the line spring data of [4] which might generally be regarded
(though not demonstrated) to be less accurate then the FE data. It is noted that
the present values increase from a/t = 0.5 t0 0.6 less rapidly than do either of the
existing values. This must raise doubts whether the good agreement of 5% found
with [3] (and indeed other 'spot' agreements reported in the literature at that level)
is genuine or fortuitous. To resolve that a wider range of cases must be studied,
although as seen for Case 1, the range of existing data is restricted so that
extensive results would by their nature, have to be taken on trust.

r :

For Case Cct1 the shape factor Y was examined around the crack front using
method i. It gradually decreased from 1.57 at the apex to about 0.6 at 36° to the
major axis of the ellipse, Fig.3. This trend is similar to the results of Kobayashi
et al [12] whereas in [13] and [14] both tend to give an increasing value for the
shape factor at positions away from the apex. In [15] complete axially symmetric
cases with internal pressure were studied so that variation around the crack front
did not occur. However, for axial cracks an increasing trend was noted with little
difference in the shape factor for inner or outer wall defects, Ezzat and Erdogan
[4] evaluated the shape factor at the apex only, implying either that that is the
most severe case or that K does not vary along the crack front. A more complex
picture emerged from the 3D FE computations of [3];
1. The shape factor at both the apex and surface increase with increasing a/t for
any a/c. The increase of the former appears linear whilst the latter is parabolic.
2. At any given crack depth ratio, a/t, the value of F at the apex decreases as a/c
increases; for the same a/t, the shape factor at the surface behaves in completely
the opposite way, i.e. F increases with a/c.

n
Crack Cc2 was also computed when subjected to local wall bending,
Ccw2B.This bending case was more sensitive to mesh pattern remote from the
crack than were the tension cases. It is not the case examined in [20] where the
whole cylinder is bent. Here, the uncracked body remains axially symmetric and
the applied stress dies away as an exponentially damped wave according to
classical shell theory. It is a first step towards cases of local wall bending in the
nodal joints of offshore structures. The result is appended to Table 3, the Y value
at the apex being some 20% less than the tensile case. The value at the surface is
higher than at the apex. The nominal applied stress used in evaluating Y is the
stress in the shell at the position of the subsequent crack. It follows from shell
theory that a value of K would depend on the distance of the crack from the
loaded end.

CONCLUSION

1) A comparative analysis of shape factor data for semi-elliptical surface cracks in
both flat plate and cylindrical shell geometries from the open literature reveals
considerable disagreement. The FE results for plates are larger than the main
other data from the line spring method, whereas for shells, the FE results are
smaller. The present rather few BIE cases fall within the global spread in both
cases.

2) For plates, the present BIE results are in better agreement with the line spring
results of Shah and Kobayashi [11] than those of Raju and Newman [1,9,10],
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which are usually taken to be the most reliable. It is not possible with the present
few data to account for the difference and hence be certain which results are in
fact most accurate.

3) For circumferential cracks in a cylindrical shell, the present results using BIE
method fall below results from the line spring model [4] but close to those from
3D FE computations [3], i.e. the reverse of the plate case.

4) A single case of local wall bending of a cicumferential crack in a cylinder
suggests the use of tensile data will be conservative at the apex, in this case by
20%.

The present BIE computations, funded under an SERC Marine Technology
Programme, were performed by Mr C.E.Noad, Computer Programmer.
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Table.l_ ith the imations
uﬂmmmmuuww

TERTT

a/t=0.2 a/t=0.4 a/t=0.6 a/t=0.8
a/c  FE----Eqn (%)* FE----Eqn (%)*  FE----Eqn (%)* FE----Eqn(%)*
02 1117-1.133 (14) 1294-1335 (3.0)  1.563-1.633 (43) 1.762-1.972 (10.6)
04 0989-0933 (:0.4) 1.065-1.103 (3.5)  1.191-1258 (5.3) 1257-1.421 (11.5)
0.6 0869-0.869 (0.0) 0.897-0.935 (4.1)  0.963-1.028 (6.3)  0.990-1.126 (12.1)

* % difference in the values from the equations in [1] and tabulted FE results in
[1i].

TABLE 2
PLATES SUBJECT TO TI:ZNSILE LOADING; Data for apex

Crack No. of LEFM SHAPE FACTOR Y at APEX+

Case Elements 1 2 3and (% from2) 4 and (% from 2)
PtOD* 153 0.993 1.03 1.04 (0.9) 1.26 (18.3)

Pt1D 157 1.008 1.05 1.04 (-0.9) 1.26 (16.7)
Pt1S* 157 1.024 1.07 1.04 (-2.8) 1.26 (15.1)

P2D 157 0.877 0.91 0.97 (6.2) 1.065 (14.6)
Pt3D 75 0.891 0.93 0.97 4.3) 1.065 (12.7)
Pt3S 75 0.884 0.92 0.97 (5.2) 1.065 (13.6)
PdD 121 0.8049 0.837 0.94 (11.0) 0.989 (15.4)
Pt4S* 121 0.8046 0.837 0.94 (11.0) 0.989 (15.4)

+ Col 1 present work using method i, Col 2 elevated 4% from 1 (* actually evaluated method
ii). Col 3 from Ref 2, Col 4 from Ref 1 ( these gave best comparison with experimental data)

TABLE 3
RESULTS FROM SZIRQ;!]MFERENT!AL!,YS:RAS;KED CYLINDERS
SUBJECT TO TENSILE STRESS s Data for apex

Crack No of —]-‘l‘:F—M-3HA.[:I‘lEA_C_’lIZR_Y_+

Case Elements 1 2 3and (% from2) 4 and (% from 2)
Cctl 157 1.57 1.634 1.637 (0.02) (--)

Cet2 113 0.831 0.864 1.033 (16.0) 0.912 (5.2)
Cct2B 121 0.827 0.860 1.033 (16.1) 0.912 (5.7)

Cct3 11 0.876 0911 0.995 (8.4) 0.938 (2.9)

+Col 1 present work using method i, Col 2 elevated by 4% from Col 1
Col 3 from Ref 4, Col 4 from Ref 3.

Ccw2B 121 i) 0.625 ii) 0.746  no other data known
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