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A BOUNDARY INTEGRAL EQUATION METHOD FOR THE PROBLEM OF
MULTIPLE, INTERACTING CRACKS IN ANISOTROPIC MATERIALS

H. Maschke*

A boundary element method is described which
combines the features of an advanced BEM-
code with special analytical techniques for
solving two-dimensional crack problems in
elastically anisotropic media. Cracks are
modelled by special Green's functions, or
alternatively, by special singular crack tip
elements. On the basis of a subdomain
technique, the Green's function for two
collinear semi-infinite cracks is used for
modelling finite double cracks. In general,
elastic anisotropy causes the coupling of
all three stress intensity factors. Its
influence is demonstrated by an example
including eight cracks.

INTRODUCTION

Elastic interaction of cracks located in a domain which
is composed of subdomains with different elastic proper-
ties including anisotropy is of particular interest in
the mechanics of materials. Different parts of a struc-
ture often consist of different materials, or the mate-
rial is the same but the orientation is different (grain
structure of metals). A crack may lie entirely inside a
homogeneous region, it may be situated along the inter-
face between two materials, or it may cross such an
interface. Mathematical investigations of multiple crack
problems are not easy, and there are only few explicit
solutions to special configurations even in the two-
dimensional case. Violaton et al. (1) derived the
Green's function for two collinear cracks of equal
length in the elastically isotropic unbounded plane and
then investigated the interaction of the cracks under
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different loading conditions. Tsai (2) found a method of
calculating stress intensity factors of two collinear
cracks situated symmetrically in an infinite strip of
orthotropic material. For more complex configurations a
cemputorized numerical procedure must be used, the most
popular one being the finite element method (FEM). As an
alternative, during the last decade boundary element
methods (BEM) have become important in continuum mecha-
nics. There are several types of boundary element meth-
ods which are all based upon an integral equation
formulation of the boundary value problem. Snyder and
Cruse (3) derived the Green's function for a finite
straight crack in the unbounded plane and considered
elastic anisotropy with the restriction that this plane
must be a crystallographic plane of symmetry. Based on
that function the authors implemented a simple variant
of the direct BEM which they developed subsequently (4).
Violaton et al. also used their Green's function for the
double crack in a BEM-code to calculate stress intensity
factors for a bounded plate containing two collinear
cracks (5). Their method was a simple implementation of
indirect BEM. Meanwhile Lachat and Watson (6) had deve-
loped some techniques which made direct BEM a powerful
competitor of FEM in the field of elasticity problems of
arbitrarily shaped bodies. Lachat and Watson introduced
multiparametric elements, efficient numerical algorithms
for element integration, and substructuring into BEM.
Kuhn (7) was the first to use substructuring for solving
multiple crack problems by direct BEM on the basis of
the Green's function for one straight crack, followed by
Rudolphi and Koo (8) and by Ang (9). If a Green's
function for a finite crack is used, as it was done by
the above authors, the interaction of two crack tips is
the more falsified the closer they are together. This is
due to the inevitable subdomain boundary between them.
In the present paper a novel method is introduced which
makes use of the Green's function for twao collinear
semi-infinite cracks in the unbounded plane. This fung-
tion is much easier to handle than that by Violaton et
al. Moreover, the present formulation also holds true
for the most general elastic anisotropy, where there is
no symmetry and no decoupling between plane strain or
stress and antiplane strain. An effective two-dimensio-
nal direct BEM-code has been written which is now part
of the BEM-library BOREAS (Bruchmechanisch Orientiertes
Randelemente—Analyse—System, i.e. Boundary Element Ana-
lysis System with Fracture-mechanical Orientation) deve-
loped at the Institute of Solid State Physics and
Electron Microscopy in Halle.
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QUTLINES OF THE PROCEDURE

In the case of linear elastostatics, Betti's reciprocal
theorem lies at the bottom of the formulation. If we use
a fundamental solution (Green's function) as reference
group, we are led to Somigliana's identity. This is a
singular integral equation which determines the unknown
boundary data provided that the boundary value problem
is properly posed. In the BEM, the boundary is discre-
tized by parametric elements with a number of boundary
nodes and the integrals over the elements are evaluated
separately (10). Substructuring leads to additional
inner boundaries which are discretized in the same way.
The present formulation generally uses isoparametric
elements with quadratic shape functions modified only
for special singular crack tip elements. The elements
form open or closed subcontours within which they are
conforming. Open subcontours are used generally for
substructuring, and for modelling discontinuities of
tractions or displacements. If two or more open subcon-
tours end in the same mathematical point, the colloca-
tion points corresponding with the nodes in identical
position must be shifted into the interior of the
elements in order to avoid mathematical difficulties. As
a result of the outlined procedure, the integral equa-
tion is transformed into a set of linear algebraic
equations, which connect the unknown boundary node va-
lues.

INCORPORATION OF CRACKS

Traction-free straight cracks which are not situated at
an inner boundary between two subregions are easily
incorporated by special Green's functions. In this case
the crack faces need not be discretized at all. Fig. 1
illustrates the crack configurations for which Green's
functions are available in a relatively simple mathema-
tical form (11). Fig. 2 shows the discretization for a
problem of 8 multiple, interacting cracks which are
modelled by Green's functions of type 2. For solving
edge crack problems the fundamental solution for a semi-
infinite crack is advantageous. The Green's function
for two collinear semi-infinite cracks is used if two
crack tips are lying close together. Fig. 3 shows how a
double crack is incorporated into a domain of arbitrary
geometry. In the inner subdomain the Green's function
for an infinite double crack is employed while the
boundary integral formulation in the surrounding one is
based on the Green's function for a finite crack. Thus,
the result is exact irrespective of the distance of the
cracks. The stress intensity factors KI, KII, KIII are
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calculated by evaluating regular integrals after solving
the boundary value problem. If crack faces are partially
loaded, their respective parts must be discretized. The
method of using special Green's functions fails, if
crack faces are loaded at the very crack tip. Such cases
are properly treated by applying special singular crack
tip elements. They are similar to the quarter-point
elements used in FEM (10), but they explicitly include
the l/fF—singularity of the crack tip stresses. Here,
the stress intensity factors KI, KII, KIII are directly
gained from the traction-values of the crack-tip nodes.
The same method applies when a crack is located at the
interface between two different materials. For the iso-
tropic case Hein and Erdogan (13) showed that the order
of the singularity is the same as in homogeneous mate-
rials. So the same boundary elements can be used.

ELASTIC ANISOTROPY

If the elastic plane is not a crystallographic plane of
symmetry there is no decoupling between plane strain or
stress and antiplane strain. This happens if the mate-
rial itself has no symmetry (triclinic material), or if
it is more symmetrical but has no symmetrical orienta-
tion. In these cases all the stress intensity factors
KI, KII, KIII must be considered simultaneously. Based
on a recent, very general stress function representation
(14), Green's functions for the crack configurations of
fig.1l were derived, which also apply to the most general
elastic anisotropy (11).

PERIODICITY

Periodicity is easily formulated by identifying the
displacement and traction values of corresponding nodes.
For instance, the lower and the upper boundary of the
example of fig. 2 might be "periodicity lines". Periodi-
city often implies a rigid translation and rotation of a
periodicity line. Both the latter are determined by the
total forces and the bending moment, which act on that
line. This option was used, for instance, for solving
the problem of thermo-shock induced growth of periodi-
cally arranged parallel cracks in an infinite strip of a
brittle material (15).

NUMERICAL EXAMPLES

Violaton et al. (5) considered an isotropic quadratic
sheet with two symmetrically arranged collinear cracks
under constant tension t. The ratio of the crack length
L to the width of the sheet 2W was 0.2. The authors
calculated the stress intensity factors KI of inner (1)
and outer (o) crack tips for various distances of inner
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crack tips 2k. Table 1 shows the normalized results
HI=KI/(tWT) given in (5) compared with own ones calcu-
lated on the basis of a discretization with 50 nodes of
the type outlined in fig. 3. A second example demon-
strates the influence of anisotropy. Consider a quadra-
tic sheet of an anisotropic material containing 8
cracks, which are arranged with 4 axes of symmetry
according to fig.2. Again the width of the sample is 2L.
Let the upper right crack be crack number one. Its tips
have the following positions: xi=0.2L, yi=0.1L, x0=0.7L,
yo=0.35L. The sample is of potassium bromide as a model
substance which is relatively strongly anisotropic with
C11=34470MPa, C12=4790MPa, C44=5080MPa. The material is
subsequently turned out of its symmetrical position by
three rotations around the x-, y-, and z-axes at angels
of 30, 20, and 10 degrees, respectively. The sample is
stretched with its clamped ends uniformly displaced in
x-direction (to the right in fig. 2). Table 2 shows the
normalized stress intensity factors HI, HII, HIII of the
cracks in the upper half of the sample. Here, t is the
averaged total traction at the clamped ends. Under this
loading, the results in the lower half are the same with
HIII, however, having opposite signs.

TABLE 1 - Normalized stress intensity factors for double
cracks of equal length in a quadratic sheet
under constant tension.

Violaton et al (5) Author
K/W HI(i) HI(o) HI(i) HI(o)
0.0 - - - 1.055
0.001 - - 2.208 0.885
0.01 1.089 0.818 1.089 0.818
0.05 0.809 0.763 0.809 0.763
0.1 0.759 0.744 0.759 0.744
0.2 0.735 0.730 0.732 0.729
03 0.726 0.724 0.723 0.722
0.4 0.722 0.722 0.720 0.720

TABLE 2 - Normalized stress intensity factors for eight
cracks in an anisotropic quadratic sheet
under tension with its ends clamped.

crack 1 crack 2 crack 3 crack 4
HI (1) 0.205 0.484 0.503 0.164
HIT (i) -0.489 -0.339 0.384 0.394
HITI(i) 0.163 0.077 0.071 -0.003
HI (o) 0.002 0.837 0.713 0.020
HII (o) -0.188 -0.307 0.315 0.179
HIII(o) 0.100 0.159 0.062 -0.022
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Figure 1. Green's functions Figure 2. Discretization of
for straight cracks a sample with eight cracks

Figure 3.Discretization of a
region with a double crack

167



