FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

INTERACTION OF BRITTLE FRACTURE AND STABILITY LOSS IN BENDED AND
COMPRESSED BARS

Zbigniew Kowal*

The interaction curves are determined in dimension-
less coordinates, thanks to their special selection
and the introduction of parametric function of axial
load. The paper is illustrated with examples of inte-
grated interaction curves of brittle fracture and
stability loss in bars under axial and transverse
load. Effect of geometrical imperfections, load dis-
tributed along the bar and concentrated load are con-
sidered.

INTRODUCTION

An attempt at solving the problem of estimating the brittle
fracture of an eccentrically loaded bar made from elastic-brittle
material with different compressive and tensile strengths is re-
ported in Kowal and Laban (1).

From the point of view of the technique of calculation and
dimensioning of eccentrically as well as axially and transversely
loaded bars, it is essential to determine the boundary curves of
brittle fracture and stability loss of such bars.

The present paper reports an attempt at constructing mathema-
tically precise integrated interaction curves of brittle fracture
and stability loss of bended and compressed bars in dimensionless
coordinates (S/Scr’ M/Mp). One integrated curve substitutes the

infinite families of interaction curves depending on bar slender-
ness and the ratio m of brittle fracture strength R to critical

stress o :
cr

R

g
cr

(1)

m =
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The problem was solved owing to the introduction of the para-
metric moment of brittle fracture Mp as a parametric function of

axial load S instead of the moment of brittle fracture that cha-
racterizes the bending capacity of the cross section of a brittle
bar in the case of zero axial force (S = 0):

M=[R+§)-é—— (2)

and relation R : Iop in place of relation R : Re. By introducing

restriction (2) to the condition of the equilibrium of moments we
obtained integrated boundary curves. These curves considerably
improve the dimensioning technique of brittle bended and compres-
sed bars.

The paper is illustrated with examples of the boundary curves
of compressed and transversely loaded bars. Loading conditions
are: load equally distributed along the bar, concentrated load,
moments concentrated at the ends of the bar and an example of bars
with initial curvature. The last example is of essential signifi-
cance for the dimensioning of bars with geometrical imperfctions.

INTERACTIONS OF BRITTLE FRACTURE AND STABILITY LOSS IN BARS UNDER
AXIAL AND TRANSVERSE LOAD

The boundary curve of a simply supported bar. Let's consider
a bar under axial and transverse load distributed along a bar as
shown in figure 1. The differential equation of the displacement
of such a bar has the form:

LTy T

EJ y +Sy =4 (3)

From the solution of the differential equation (3), we obtain the
displacement y. In the case of simply-supported ends, we have:

Bcos (kx) B (x2 _ 1 _ 2% (4)

Tk cos (k&/2) @ k?

where: B = gq/EJ and k? = S/EJ. Brittle fracture will occur at the
place of maximal bending moment. Maximal bending moment cannot
exceed the brittle fracture strength:

max M = qﬂ,z 2(1 - cos u) J ( s) (5)

¢ —_— . L = —_— =
8 u? cos u - Mp Cr R*%

where u = k&/2 = JS/Scr w2, Scr = w2 EJ/&2.
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The equation of the interaction of the boundary curve assumes
the form:

M - Q&% 20 - cos u)
p 8 u? cos u

(6)

It is convenient to denote the interaction curve in dimensi-
onless coordinates [M/Mp, S/Scr]:

> cos (vVS/S__ w/2)
— °er (7)

1~ws(/wsm.w2)

=S

le
]
(/)I(/J
-
[l

cr

o

where: M = q12/8. Restriction of equation (7) is not to exceed the
yield point Re of the material in the compressed area of the cross

section of the bar:

(8)

Q

[}
11 7%]

+
L.I =

(@]

[ 72N

=

The plot of the interaction curve in coordinates (M/Mp, S/Scr]

is represented in figure 1. This plot does not diverge from the
straight line. The precise coordinates of curve (7) are given in
table 1 (column 2).

The interaction curve of brittle fracture and stability loss
can also be introduced in dimensionless coordinates (q/qp, S/Sch'

We then obtain:

., cos (/3/3cr m/2)

E]

(9)

.Dl.o
[
(/Jl(n
I3

cr

el

1 - cos (JS/Scr w/2)
where: q = 8 M/%2 and qp =8 MP/SL2

EXAMPLE 1. Calculate the bending strength from the condition of
brittle fracture in a bar of length £ = 600 cm loaded with axial
force S = 0.6 Scr’ made from elastic-brittle material with R = 0.4
Gt the cross section being F = 18 x 18 = 324 cm? and Young's
modulus E = 30.000 MPa.
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CALCULATION. Critical capacity from the condition of stability
loss is:

S = w2 EJ/8% = 7T19.5 N
er

Load by axial force is S = 0.6 Scr = U31.7 N.

Critical compressive stress is T = Scr/F = 22.2 kN/cm?.

Critical moment of brittle fracture is:

My = (R + S/F) J/C_ = 9926.46 kiem

Critical external load of the bar by moment M is:

M = 0.39285 Mp = 3901 kNcm

Critical transverse external load of the bar is:
q = 8M/4% = 86.7 N/cm

CONCLUSION. Critical load of the bar from the condition of brittle
fracture is measured by means of coordinates S = 431.7 kN,
M = 3901 kNem or S = 431.7 kN, q = 86.7 N/cm.

In the case of a bar mounted at both ends and under longitu-
dinal and transverse load as shown in figure 2, the maximal bend-
ing moment occurs on the support and is:

—_— e <
oy grra el Mp (10)

The maximal moment must be less or equal to the capacity of
brittle fracture of the cross section. Taking into account the
fact that the critical axial load Ser of a bar mounted at both

ends differs from that of a simply-supported bar and equals:

Sep = Y2 EJ/ L2 (11)

therefore u equals u = k/2 = 7 /S/Scr. Finally, the boundary cur-

ve assumes the form:

tg (m /S/Scr)

M

A 2 3
A (-] (12)
p cr

tg (m /S/Scr) - m /S/S
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The coordinates of the interaction curve of brittle fracture
and stability loss are given in table 1, (column 4) and the shape
is shown in figure 2.

The boundary curve for a span assumes the form:

5 sin (v v/S/5_)
- 5] = (13)
°T sin (x /575_) - n /375,
cr cr

Z'Z
o |0

where: M, = ql?/24 and MA = ql%/12.

The coordinates of the boundary curve are represented in ta-
ble 1 (column 3), the shape is shown in figure 2.

EXAMPLE. Calculate load g of brittle fracture for a support and
span assuming that S = 0.5 Scr'

From table 1, we have MA = 0.61127 Mp and MO = -0.459 Mp'

q = 0.61127 x 12 Mp/st2 = T7.335 Mplz.

Load q = 7.335 Mp/l2 resulting from the boundary curve for
the cross section on the support is assumed to be adequate for the
bar's capacity.

INTERACTION OF BRITTLE FRACTURE AND STABILITY LOSS IN THE CASE OF
SINUSOIDALLY DISTRIBUTED TRANSVERSE LOAD

Let's consider a bar loaded axially and transversely by a
sinusoidally distributes load. From the solution of the differen-
tial equation:

Ttry 1

EJ y *+Sy =gqg sin (m x/8) (14)

the maximal bending moment equals:

M
[¢]
max M —W (]5)
cr

The equation of the boundary curve of brittle fracture and
stability loss assumes the shape of a straight line:

M
‘M—‘*S =1 (16)
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The maximal bending displacement can be determined from the
formula:

y =¥,/ (h - S/Scr) (7
where: Ty = q“/m* EJ = deflection of a beam under a transverse
load only.

The coordinates of the interaction curve are represented in
table 1 (column 5).

THE INTERACTION OF BRITTLE FRACTURE AND STABILITY LOSS OF BARS
LOADED AXIALLY AND TRANSVERSELY BY A CONCENTRATED AXIAL FORCE

Let's consider a bar under a load as shown in figure 3. We
determine the maximal bending moment of a bar from the differenti-
al equation of stability and boundary conditions. This yields:

_ P2 tg u

max M = g o (18)

The interaction equation assumes the form:

S/S w/2
M cr
el (19)

p _
tg (/3/scr m/2)

The plot of the interaction curve in coordinates (M/Mp, S/Scr)

is represented in figure 3. Coordinates of the interaction curves
are given in table 2 (column 6).

)

The equation of the interaction curve in coordinates (P/Pp, S/Scr

has an identical form:

LA
— -
P P

(20)

ZIZ

where: P = 4 M/% and Pp =4 Mp/l.

The displacement in the middle of the bar is determined from
the formula:

P2
Y =T s

(tg u - u) (21)
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INTERACTION OF BRITTLE FRACTURE AND STABILITY LOSS OF BARS WITH
INITIAL CURVATURE

Let's consider bars eccentrically compressed, simply support-
ed at the ends with an initial sinusoidal curvature f sin (7 x/1).
In such a case, from the solution of the differential equation of
stability loss EJ y'' + S [y + f sin (7w x/z)] = 0 we have:

S
cr

=5 =8 " S f sin (mw x/4%) (22)

Brittle fracture may occur at the place of the maximal bending
moment. Therefore, the boundary equation curve assumes the form:

=1 (23)

where: M = S f. This is the equation of a straight line. The plot
of the interaction curve is the same as that for the sinusoidal
transverse load (16). It should be emphasized once more that such
a simple equation of the boundary curve of the brittle fracture
and stability loss interaction, which replaces the infinite fami-
lies of the interaction curves, was obtained by the introduction
of a parametric function (2) of the cross section's capacity from
the condition of brittle fracture and the determination of brittle
strength in relation to critical stresses.

EXAMPLE 1. Calculate the moment of brittle fracture of a bar load-

ed by an axial force S = 0.6 Scr’ simply supported at ends, made

from elastic-brittle material. The bar is 600 cm long and its
cross section is F = 18 x 18 = 364 cm?, J = 8748 cm", Young's mo-
dulus 30,000 MPa and the brittle fracture strength is

R = 0.4 -

CALCULATION. Critical capacity from the condition of stability
loss equals S_ = m2 EJ/%% = 719 KkN.
The axial load equals S = 0.6 Scr = 431.7 kN.
Critical stress is ¢ =S /F = 22.2 kKN/cm?.
cr cr

The brittle fracture strength of the material from the investiga-

tion is R = 8,88 kN/cm? = 0.4 Oope

The moment of brittle fracture, when S = 0, is:

B = (R + s/F) J/C. = 9926 kNem
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The moment of brittle fracture, when:

S = 0.6 Scr is M = 0.4 Mp = 0.4 x 9926 = 3971 kNem

The critical value of the initial deflection is:
f = M/S = 3971/431.7 = 9.2 cm

EXAMPLE 2. A bar is given as in Example 1. Calculate the coordina-
tes of the brittle fracture and stability loss interaction in the
case of zero compressive strength of the material R = 0. The cri-
tical moment of brittle fracture is:

_J_ S _ 8748 431.7 _
M = CFTy mE ot 1295 kNem

The critical load by an external bending moment M = S f is:

M= 0.4 Mp = 518 kNem

The critical value of the deflection is f = 1.2 cm.

INTERACTION OF BRITTLE FRACTURE AND STABILITY LOSS IN A BAR LOADED
AXIALLY AND BY CONCENTRATED MOMENTS AT ENDS

Let's consider a bar under a load as shown in figure 4. The
maximal bending moment of a bar loaded axially and by moments at
the ends has the form:

max M = Mo/cos u (24)

It is accompanied by a displacement:

max y = (1/cos u - 1) MO/S (25)

The boundary curve assumes the form:

= cos (% //gﬁ_) (26)
er

ZIZ
T |0

The plot of the interaction curve in coordinates (MO/MD, S/Scr)

is shown in figure 4. Numerical values are represented in table 1
(column 7).
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DISCUSSION AND CONCLUSIONS

The introduction of the parametric moment Mp of brittle fractu-

re as a function of axial load made it possible to replace the
infinite families of the interaction curves which depend on the
shape of the load and the boundary conditions of the bar.

The solutions have been illustrated with examples of the inter-

action curves and the ways of utilizing them in engineering
practice.

In the construction of the interaction curves it should be re-
membered that the critical load can be expressed by different
formulae for different boundary conditions, which may be easily
overlooked due to the formalism of calculation.

The interaction curves of stability loss and brittle fracture
considerably facilitate the dimensioning of bar pillars built
from elastic-brittle materials of tensile strength R smaller
than the compressive strength Re.

SYMBOLS USED

C distance of the extreme tensile and compressive stresses
from the gravity centre of the cross section
Young's modulus
area of the cross section of the bar
arrow of the initial deflection of the bar
inertia moment of the cross section
moment load on the bar
moment of brittle fracture
axial force in a bar
critical load of the bar
transverse displacement of the bar

critical stress of the bar
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TABLE 1 - Coordinates of the interaction curves of brittle
fracture and stability loss.

S/S M/M M/M M, /M M/M M/M M/M
cr p p A p p p p
1 2 3 Y 5 6 7

0.0 1.0 1.0 1.0 1.0 1.0 1.0

0.1 0.897L45 | -0.88615 | 0.93226 | 0.9 0.91637 | 0.87915
0.2 0.79542 | -0.77499 | 0.86026 | 0.8 0.82983 | 0.76324
0.3 0.69386 | -0.66665 | 0.78335 | 0.7 0.74016 | 0.65216
0.4 0.59299 | -0.56127 | 0.70069 | 0.6 0.64711 | 0.54579
0.5 0.49263 | -0.45901 | 0.61127 | 0.5 0.55041 | 0.44402
0.6 0.39285 | -0.36002 | 0.51378 | 0.4 0.44975 | 0.34671
0.7 0.29368 | -0.26445 | 0.40655 | 0.3 0.34479 | 0.25377
0.8 | 0.19513 | -0.16182 | 0.28735 | 0.2 0.23515 | 0.16507
0.9 0.09723 | -0.08427 | 0.15320 | 0.1 0.12038 | 0.08052
1.0 0.0 0.0 0.0 0.0 0.0 0.0
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figure 1 Interaction curve (7)
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figure 2 Interaction vurves
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figure 3 Interaction curve (19)
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figure U4 Interaction curve (26)



