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THE EFFECT OF THE RESIDUAL STRAIN
ON THE CRACK INITIATION

Hideyuki HORII, Akio HASEGAWA, and Fumio NISHINO*

The main object of this paper is to inves~—
tigate the effect of the residual strain at a
crack tip on crack initiation and crack
growth. We present an analytical model of
plastic zones at the original crack tip and
examine their effect on the stress intensity
factor at the extended crack tip. Questions
how and when an increasing load leads to un-—
stable crack initiation instead of further
growth of the plastic zone are answered
Because of the residual strain, the energy re-
quired for the crack initiation increases
dramatically with increasing ductility, which
leads to the transition from brittle C(un-—
stable) crack growth to ductile (stable) one.

INTRODUCTION

Although extensive efforts have been devoted on the
characterization of the crack growth phenomena, there
seem to exist numerous things to be clarified. The main
object of this paper is to quantify the effect of the
residual strain at the crack tip, which seems to be
necessary to grasp the condition for crack jinitiation
and crack growth. Questions of the adequacy to use the
J-integral for the ductile crack growth have been
raised, whereas it was first considered to be the non-—
linear counterpart of the linear energy release rate.
Rice (1) pointed out that a Griffith—type energy balance
for crack growth leads to paradoxical results for
elastic—-plastic materials, since such solids provide no
energy surplus for the material separation in the con-—
tinuous crack advance. The limitation of the J-integral
of the deformation theory is discussed for the ductile
crack growth where the unloading and the residual strain
play dominant roles; Hutchinson and Paris (2). On the
basis of those and related discussions, different models
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of crack growth and various versions of modified J-
integral and modified energy release rate have been
pProposed (3-6). The emphasis has been cast on the neces-
sity of constructing a model of the crack tip separation
Process, and based on that model to find a suitable ap-
Proach to the crack growth.

How and when does an increasing load lead to un-
stable crack initiation instead of further growth of the
plastic zone, and how is the unstable crack initiation
suppressed as the ductility of the material increases?
To answer those questions, we propose a model of the un-—
stable crack initiation from the original crack tip at
which a plastic zone has grown. The attention is paid to
the effect of the residual strain in the plastic zone on
the crack extension.

PLASTIC ZONE AT THE CRACK TIP

Since the plastic zone at the crack tip in plane strain
under tensile stress is of the shape shown in Fig. 1a,
the Dugdale model is modified as is shown in Fig. 1b,
where two planes of plastic flow inclined to the plane
of the crack are considered; see e.g. Vitek (7). Along
the planes of plastic flow the yield condition is
assumed. Numerical results provide various features of
the plastic zone at the crack tip - size, orientation,
CTOD, and so on. No information on the crack growth,
however, is drawn from this model.

To study the Possibility of the unstable crack
growth from the original crack tip, we consider a mode 1l
shown in Fig. 1ec. The extended crack 0Q is considered
where the residual strain (the displacement gap) is dis-—
tributed along the plastic zone O’'P,O0’P’ at the original
crack tip O’. The distribution of the residual strain is
obtained by solving the Problem of Fig. 1b. Since we
restrict our attention on the unstable crack growth
where the strain rate is high enough, the plastic de for—
mation at the tip of the extended crack is neglected
Deformation in mode I under plane strain is considered.

We introduce a loading barameter for this model,
"the applied K-value”, which is defined as the mode I
stress intensity factor at the crack tip when the
material is assumed to be elastic. It is known that the
stability of the crack growth highly depends on the
geometry of the specimen and the way of loadings. In
this paper we consider the crack growth under the con—
stant applied K-value. Results may be easily applied for
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cases where the loading is the function of the crack
length.

The problem consists of two parts. First we consider
the plastic zone growth prior to the crack extension;
see Fig. 1b. The problem is symmetric with respect to
the x—axis. The length of the plastic zone, which makes
an angle 8 with the x—axis, is denoted by Qp. The bound-—

ary conditions are given by

g =T =0, on 0Q, @9
4 Xy
MERN = OP and OP’ @
ug = LI Lol = Ty on an .

where superscripts + and — indicate the value of the

quantity on the upper and lower surfaces of the plastic
zone and Ty denotes the yielding shear stress. The cond—

ition at the end of the plastic zone,
stress is bounded at P and P’, (&)

must be satisfied. With the applied K-value, we find the
solution which satisfies conditions (1-3). To solve this
problem we use the Green’s function technique with the
solution of a dislocation'near a semi—infinite crack.
Distributed dislocations along plastic zones are
introduced. The condition (1> |is automatically satisfied
and the condition (2) leads to the singular integral
equation for the dislocation density. It is solved
numerically with the condition (3).

Next, with the obtained distribution of the residual
strain, we calculate the stress intensity factor at the
tip of the extended crack, which is different from the
applied K-value because of the effect of the residual
strain. Mathematical formulations are shown in the fol-
lowing section. Those who are not interested in the
mathematical details can skip the next section without
loss of continuity. Note that the mathematical formula-—
tion is easily modified for a finite crack; see Horii,
Hasegawa, and Nishino (8) for details.

The interaction of plastic zones and cracks is also
a fundamental factor in the micromechanism of the
brittle—ductile transition under compression. Its
analytical model is proposed by Nemat—Nasser and Horii
(9), and Horii and Nemat—Nasser (10). The model includes
cracks and plastic zones emanating from an initial
defect. Various features of the brittle—ductile transi—

tion are explained in terms of analytical results
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MATHEMATICAL FORMULATION

For the mathematical formulation, Muskhelishvili’s
complex stress functions & and ¥ are employed (11). In
terms of these potentials the stresses and displacements
are given by

g+ a = 2@ + 0) 5
X y

g — g + 2irt = 2(zo” + y’) . (€D
y X Xy
ZuCu, + ju)d = ke - Zp -V,
X y
where u is the shear modulus; k = 3-4v for plane strain,

vV being Poisson’s ratio; z = x + iy with i = V=1, overbar
denotes the complex conjugate; and Prime stands for dif-
ferentiation with respect to the argument.

To solve the problem we consider a single disloca-
tion at Zg near a semi—-infinite crack, We introduce
i = + = +
stress functions @D 00 ¢R and WD WO WR where @O
and WO are stress functions for a single dislocation in
an infinite plane and QR and WR are the complementary

Potentials to satisfy the stress free condition (1)
along the crack surface. QR and WR are obtained by the

me thod of Muskhelishvili (11>. They are given by

o o oz .
P’ = R Y = + 0 B
z - 'z Q z = z (z - z )2
0 0 0
9 = —a[F(z,zo> + F(z,z—o)] -~ Z(zo - EB)G(Z,ZO) ;
yro= 0& - QR = 2¢R » 5
with
z 1
=1, _ (20 = 9
F(z,zo) [1 ] . G(z,zo) = F(z,zo), 6)
z z - z0 0

. + -
where o = u([ur]+i[u6])ele/ni(K+1), [ul = u - 4™, and 3

Z)«

1]
S
~

The stress functions @A and WAfor the applied load

are given by,
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K
1A —_— 1A

1
A 2 V2nz & V2nz

KIA’ called "the applied K-value” is the loading

)

P

parameter for the semi—infinite crack.

Stress functions °D’ WD and bA’ WA automatically

satisfy the stress free condition (1) on the crack
surface. We introduce distributed dislocations along the
plastic zones OP and OP’; see Fig. 1b. From the first
equation of (2) and the symmetry of the problem, the
dislocation density is given by

Ee]e , and

igere 1%, atzg= T @

o (8)

—iB(E)e18 n at z

R (8D

where B(£), which is the derivative of the shear dis—
placement gap across the plastic zone with respect to
the distance &, is a real function to be determined. The
yield condition along the plastic zone — the second
equation of (2>, leads to the singular integral equation
for the dislocation density B(&),

Q g (&) Q
—2] P s + j P g(£)K(E, n;B8)dE
0 &€ - n 0
K
1A 1 . B
+ - 251necos2 =Ty s (€=D)
JY2nn
where
4i8 2ins in28
K¢, n;8) = Refe [ — + - 1}
£ — ne2le g = ne219)2
: 2iB ¢, ’ —
+ 4nsin26Refe [F (z,zo) + F (z,zo)
~ gfs" 0" (2 7y # o186’ (z, 211} am
with Re{ )} for the real part of the argument; F’ = %;F.

The singular integral equation (8) for the disloca~
tion density B(£) is solved numerically by the method of
Gerasoulis and Srivastav (12) with the condition (3D
resulting in
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e

TYJnQp

From the obtained distribution of the dislocation den-—
sity, the crack opening displacements 6 and the
dissipated plastic work Wp are obtained as

= () . an

9
6 = 25 inglik*tD) j P gy dg
u 0

Q Q2
W=21MJPIPB(§)dEdn, a2
P Y u
0] n
which are calculated in the forms
6 w i
m= d@ , —L“—('<+—D=w(6) ‘ a3
T 2 1292
Y'p Y'p

The obtained distribution of the dislocation density
is used as the residual strain when we consider the ex—
tended crack; see Fig. 1c. We calculate the stress
intensity factor AKI at the tip of the extended crack

due to the residual strain along the plastic zones. From
Egns. 4>, (5), (6), and 8, AKI is given by

Qp 1 Seie
AKI = —4y/2nsin6 I B (8)Re({ + } dg , Q4
0 Jzo 220VZO

which is calculated in the form

AKI
YVnQp

In the following section, numerical results are
shown and the growth of plastic zone followed by the un-
stable crack growth is discussed.

= g(ﬂt/ﬁp;s) . (15
T

RESULTS AND DISCUSSIONS

In the previous section it is shown that by solving the
singular integral equation numerically, we obtain

K &
IA u
— = f(8) — = d®8)
’ n(k+1) ’
TYJnﬂp TYQp
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= g(Qt/Qp;e) ’ ael

where &6 and Wp are the crack opening displacement and

the dissipated plastic work prior to the crack exten—
sion, respectively; AKI is the stress intensity factor

at the extended crack tip due to the residual strain.
The total stress intensity factor at the extended crack
tip is given by the summation, KI = KIA + AKI’ The quan—

tities f(®, d@®, w(), and g(&t/ﬂp;e) are the

nondimensional values calculated for given 8 and Qt/ﬂp.

The orientation of the plastic zone is set to be
76. 19 such that the dissipated plastic work Wp is maxi-—

mized for a constant applied K-value, KIA' (The

orientation which maximizes the length of the plastic
zone is slightly less than that which does the dis-—
sipated plastic work.) With this orientation, we have
[see Egns. as 1,

K 6EG
IA _ 5 35, Y = 0.565 ,

TYJnQp K%A(l—vZ)

) Eo§
Pk ! = 0.0225 an

KiA(l—v2)
where UY = 2TY and E denotes the Young’s modulus. Cor=

responding to this orientation and the associated dis—
tribution of the residual strain, we calculate the
stress intensity factor AKI at the extended crack tip

for different values of ﬁt/ﬂp; see Eqns. (16D and Fisg.
2.

So far the introduced material parameter is only the
yielding shear stress Ty. To discuss the crack exten—
sion, we require the fracture toughness Gc or Kc which

are related each other through the relation between the

energy release rate G and the stress intensity factor
K
I‘
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—_—\y2
C = lﬁﬁ— K3 . 18

Then the material Property is represented by two
pParameters Ty and Kc. The characteristic length of the

material rp is defined by

K2
_ c
rp = 8nr§ ’ (19
which is the Irwin’s plastic zone correction with KI =
Kc' Each material has its own characteristic length. For

example, the value of rp is larger than 135mm for low

strength Carbon steel énd about 0. 1mm for 4340 steel.
Quantities whose dimensions include the length are non-—
dimensionalized us ing rp. With this characteristic

length it follows from Eqns. (17) that

KIA 2
R:_ = 0. 83 F;R . 20>

From Egns. (16>, (19>, and (20>, we have the stress in-
tensity factor at the extended crack tip as a function
of Slt/rp and Qp/rp,

K1 _ Kia | 0K )
E = Kc -+ ? = rp [ 0. 83 + g(Slt/Qp)/Zw/E ] 5 @D

which is shown in Fig. 3 where lines for constant values

of KI/Kc are plotted. Above the critical line for KI/Kc

= 1, the stress intensity factor KI at the crack tip is
larger than the fracture toughness Kc' Once the crack is

extended beyond the critical line, the crack runs away
by itself. This instability is possible if the applied
K-value is greater than the fracture toughness as is
seen in Fig. 3. However, the shaded area below the
critical line where KI is less than Kc obstructs the

crack growth. To jump this obstacle some energy must be
supplied since the released energy due to the crack ex—
tension is less than that required for the material
separation. Once energy required to jump the obstacle is
supplied, the unstable crack growth is materialized.

To calculate the energy required to initiate the
crack extension, we plot the energy release rate (see
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Eqn. (18)) as a function of the length of the crack ex—
tension for different values of the applied K-value in

Fig. 4. It is seen that the energy release rate reaches
the straight line, G = Gc' when KIA is greater than Kc'

The energy required for the crack extension is calcu-
lated as the area surrounded by the corresponding curve,
the straight line for G = Gc, and the vertical axis; the

shaded area for KIA = Kc. As the applied K-value in—

creases, the associated area, that is the required
energy, decreases. Calculated energy per unit thickness
required for the crack extension, Ei' is shown in Fig. 5

as a function of the applied K-value.

As is seen from Fig. 5, the maximum energy required
for the crack extension at KIA/KC = 1 is given by Ei =

0.25Gcrp. It is equal to the energy for the material
separation of length a quarter of rp. It increases dras—

tically as the ductility of the material increases. For
example, Ei is 0.26 J/m for 4340 steels and 7300 J/m for

Carbon steels. In Fig. 6 the characteristic length rp

and the maximum enersgy required for the crack initiation
Ei are plotted as a function of Ty and Kc together with

data for typical metals; to calculate Ei' E = 20X1010

Nm—2 and v = 0.3 are used.

For brittle materials such as Maraging steels, the
energy required for the crack extension is so small that
it is provided from the external system by dynamic ef-—
fects and others. Hence the crack extension is supposed
to occur at the minimum value of the applied K—-value
which is the same as the fracture toughness. Therefore
it is concluded that the Griffith criterion is valid for
brittle materials even with the plastic zone at the
crack tip prior to its extension.

As the ductility of the material increases, the re—
quired energy for the crack initiation increases
drastically and it may not be possible to jump the
obstacle at KIA = Kc' Then two choices are possible: One
is that the required energy for the crack extension

decreases with the increasing KIA as shown in Fig. IS

and at a certain stage the unstable crack extension is
materialized. The other is that with the increasing KIA
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a stable crack growth occurs where the applied K-value
must be increased to advance the crack and large plastic
zones follow the crack tip as it advances. The predic—-
tion requires a criterion of the stable (ductile) crack
growth which must be based on the micro—events ahead of
the crack tip such as the void growth and their
coalescence.

Although the mechanism of the stable crack growth is
out of focus in this paper, the residual strain is con-—-
sidered to play an important role in the stable crack
growth. As the crack continues the stable growth, the
plastic zone follows the advancing crack tip accumulat-—
ing residual strains behind the crack tip. The resis-—
tance to fracture continues to rise due to the accumu-—
lated residual stain. With increasing crack length the
applied K-value increases, and the required energy for
the unstable crack growth decreases similarly to the
case shown in Figs. 4 and 5.

It is seen from our results that the brittle crack
initiation necessarily accompanies an instability be-—
cause it is accomplished by jumping the obstacle due to
the residual strain. The residual strain also plays an
important role in fatigue crack growth, for example, in
the retardation effect of overloads. This study shows a
way to estimate the increase in the fracture toughness
due to the residual strain.

In this paper the applied K-value is introduced as a
loading parameter and is fixed constant for the crack
extension. In the actual situation, the applied K-value
changes as the plastic deformation Proceeds and as the
crack extends in a very complex manner. The stability of
the crack growth depends on the way of the loading, the
stiffness of the loading machine and other factors. Our
results are easily modified for those cases if their
relations are given.
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Figure 1 (a) The plastic zone at the tip of a semi-infinite crack
in plane strain, (b) planes OP,0P’ of the plastic flow at the tip
of a semi-infinite crack 0Q, and (c) the extended crack 00 with
the residual strain along the plastic zones 0'P,0'P’ at the
original crack tip O’.
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Figure 2 The

crack
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Figure 3 Lines for constant value of the stress intensity
at the tip of the extended crack.
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Figure 4 The energy release rate vs. the extended crack length for
the indicated applied K-value.

T T T T T T T

Ei | i

Gcrp

02 .

.l + 4

O 1 1 1 1 1 1 1
1.0 .2 1.4 1.6
Kia/Ke

Figure 5 The energy required for the crack extension vs. the
applied K-value.
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Figure 6 The characteristic length and the maximum energy for the
crack initiation together with data for typical metals.
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