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INTERACTION OF CRACKS UNDER DYNAMIC LOADING

Ch. Zhang*, D. Gross*

The elastodynamic problem of straight
cracks in an infinite plate which is loaded
by harmonic waves is solved by an integral
equation method. Furthermore, rectangular
plates containing two or more cracks under
impact load are investigated by the finite
difference method. Numerical results for
the stress intensity factors are presented.

1. INTRODUCTION

The interaction of cracks under dynamic loading has
been discussed only for a few special cases up to now.
Using integral transform methods Jian and Kanwal [1]
and Itou [2] studied for instance two coplanar cracks
in an infinite elastic plate under the action of normal
incident plane harmonic waves. Impact loaded rectangu-
lar plates containing cracks have been treated in [3]
by means of the finite difference method. Such problems
were also investigated experimentally by Kalthoff
et.al. [4]. All results show that dynamic crack inter-
action phenomena are quite different from static ones.

In the present paper two group of problems are con-
sidered. The first one concerns an infinite plate
weakened by a set of straight cracks which are subjec-
ted by harmonic waves. This problem will be formulated
in terms of integral equations which can be solved
numerically. The second group are rectangular plates
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with two or more cracks which are loaded by an impact.
For this problem a computer program is developed which
bases on the finite difference method.

2. INTEGRAL EQUATIONS FOR A CRACKED INFINITE PLATE

We consider the plane strain or plane stress state of
an infinite plate containing N straight cracks of
length 2ax (k = 1,...,N). The configuration of the
cracks and the notation is specified in figure 1.

Let time-harmonic elastic P or SV waves (the factor
exp(-iwt) is ommitted throughout the analysis) impinge
on the cracks. These waves cause scattered waves due
to the presence of the cracks. The total displacement
and stress field therefore consists of the incident

i i i i s s .
field ul oaB and the scattered field us caB'
- ¢ s _ i s
u, uy + u, OGB OaB + oaB . (1)

Both the partial fields and the total fields fulfill
the equation of motion and Hookes law. Furthermore, the
scattered field must satisfy the radiation conditions.
Because the crack faces are traction free the boundary
condition can be written as

2 2 2
OGB(XIIO) ng = o, lxl\ ¢ -

If the incident field is known, the main task con-

sists in the determination of the scattered field. For
this purpose we use the representation theorem for the
scattered displacements [5]:
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Herein wg(x¥ denotes the displacement jump across the
cracks and Oggy (x®, x') is the Greens function. From

(3) and Hookes law the stresses can be derived. Using
a dimensionless coordinate t = xE/ak this leads to-
gether with (1) and (2) to the set of N integral equa-
tions
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for the unknown quantity wk. The left hand side of (4)

describes the known tractions along the crack faces on

account of the incident wave; A and u are the Lamé con-
stants.

Solutions of (4) can be found numerically [5]. The
stress intensity factors then follow from

+ k, k
Koix lbz(xl)
_ W21 2im 1 (5)
1+u k
+ xiotay fay ¥ XK K, k
Kix W=
where n = 3-4v in plane strain and w = (3-v)/(1+v) in

plane stress.

3. THE FINITE DIFFERENCE METHOD

The time dependent displacement and stress field in
plane elastodynamics can be described by Naviers equa-
tion

, Bzua , , BzuB Bzua
c? —5— + (c?-c?) = > (6)
1 BXB 1 2 axaaxB ot
2 2
and Hookes law. Herein ci; = (A+2u)/p and c. = u/p

denote the velocities of P waves and S waves respecti-
vely. Finally, the appropriate initial and boundary
conditions are required.

If the displacement field for an initial boundary
value problem of a plate with stationary cracks is
found, the stress intensity factors may be calculated
from the well known near field solution

u -ul cos 2
1 K 2
s = (n — cosp) +
2u 21
I sin 2
2 2 (7)
sin % (2 + un+ cosyp)
K
+ .ll,/li
21 21 !
cos SZE (2= wn - cosop)

in which u; is the rigid body displacement.
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The numerical treatment of (6) and the calculation
of the K-factors was done by a computer program which
is based on the finite difference sheme. Details may
be found in [61, [7].

4. RESULTS AND DISCUSSION

Examples for the interaction of two straight cracks of
length 2a in an infinite plate are shown in figures
2 - 5. As dynamic loading plane harmonic P waves and
SV waves with amplitudes Oo and T, respectively and
the frequency w (or wave number k, = w/cy) are assumed.
The propagation direction of the waves with respect to
the cracks is given by the angle ©. The dynamic K-fac-
tors are normalized by the corresponding static values

kStAt = go/ma ,  KILOT = to/ma

I TT

for a single crack. All computations have been carried
out for plane strain and a Poissons ration v = 1/3.

Figure 2 shows Ky versus the dimensionless wave
number for two collinear cracks under P-wave loading
and © = O. In this case at the inner and outer crack
tips pure mode I conditions occur (K11 = O). Starting
at the static values the Ki-factors increase with in-
creasing wave number; then after reaching a maximum
they decrease more Or less monotonically. The maximum
values depend on the crack distance c whereby the in-
fluence of c is stronger for the inner crack tips than
for the outer crack tips. For example in the case of

c = 2,5a the static value for the inner tips is
Kitat = 1,23 ogvma .

The dynamic maximum value is approximately 24 percent
higher. Generally the K(k,a)-curves depend strongly on
the angle © of wave incidence. For angles © # O also
K11 values occur. Detailed results can be found in [51].

Results for SV-wave loading (8 =0) of collinear
cracks are plotted in figure 3. Similar as for P-wave
loading there is a strong dependence on the wave number
and the crack distance. Remarkable in this case is the
different behaviour for the inner and outer crack tips.
It also shall be noted that on account of crack inter-
action in both cases (P and sV) higher K-values may
occur for larger crack distances C than for smaller
distances. This is contrary to the result for static
loading.
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In figures 4 and 5 the results for two wave loaded
parallel cracks of equal length 2a are shown. In this
case mixed mode conditions are present. Generally the
interaction of the cracks gets stronger as the cracks
approach each other. For small crack distance d both
modes (K1 , Kry) can be of the same importance. Fur-
thermore, the dynamic magnification may be higher than
for collinear cracks, as one can see from the peaks
in figure 4. For all cases crack @® produces higher
K-maxima than crack

Some examples of impact loaded cracked rectangular
plates are shown in figures 6 - 9. Hereby the stress im-
pact is assumed as a Heaviside function. Results for
two different configurations of two parallel cracks are
presented in figures 6 and 7. In this case K1 as well
as Kry is present. Because of the wave reflexions at
the cracks and at the boundaries the K-curves show in
their details a behavior which cannot be explained
simply. Remarkable is the global "periodic" shape
which is connected with repeated P-wave reflexions at
the loaded boundaries and the crack faces. Of interest
are also the "amplitudes" of the curves. With the cor-
responding static values

Kitat - 0,95 oo/ma , K583t = 0,25 o,/ma
one gets for the first configuration dynamic magnifica-
tion factors of approximately 2,5 for Ky and 1,6 for
Kyy. For the second configuration the magnification
factors are 1,9 and 2,3 for Ky and K11 respectively.

Figure 8 shows the Kr-curve for a plate with two
edge cracks and one interior crack. In general the
stress intensity factors for the edge cracks are higher
than for the interior crack.

Finally a rectangular plate with two edge cracks is
considered in figure 9. It shall be noted that the ma-
ximum Kr-value in the time intervall under considera-
tion is the second peak of the curve.
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Figure 1 Infinite plate containing a set of cracks
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Figure 2b KI—factors for two collinear cracks
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Figure 6 K-factors for a plate with two interior
cracks: first configuration
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Figure 7 K-factors for a plate with two interior
cracks: second configuration
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Figure 8 K-factors for a plate with two edge cracks
and one interior crack
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Figure 9 K-factors for a plate with two parallel
edge cracks
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