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WEIGHT FUNCTIONS FOR THE NON-SYMMETRIC PROBLEM
OF AN INCLINED CRACK IN A STRIP

(1) (2)
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Few results have been published on dissym-
metrically cracked bodies.

Weight functions are calculated for non
symmetrically cracked strips. Comparison
with solutions of symmetrical problems are
Presented.

INTRODUCTION
e SUN

It is well known that a symmetric load on a dissymme-
trically cracked body results in mixed modes. However
very few solutions have been published for non symme-
trical problems.

In this paper the Bueckner's weight functions are
calculated for strips with an inclined crack. Dissym-
metry results in four weight functions for which curves
and polynomial €éxpressions are presented.
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I - Definition and calculation of the weight functions

1.1 - Bueckner's weight functions L1] are here definegd
as the stress intensity factor resulting from a unit

Gy;(x,a) = \/g i3 ™

i=1, 1I j =N, T
The singularity of GIN and GIIT at the front makes it
advisable to define non dimensional and non singular

functions
mij(x,a) = Gij(x,a) Va - X (1)

At the crack front x=a the direct functions are 11}
mIN(a,a) = mIIT(a,a) =1 (2-a)

while the crossed functions resulting from geometric
dissymmetry are

mIIN(a,a) = mIT(a,a) =0 (2-b)
The stress intensity factors are
a
P N(x)mIN(x,a)+T(x)mIT(x,a)
Ky = dx = Kpy + Kpp
' a-x
-a (3)
a
2 A N(x)mIIN(x,a)+T(x)mIIT(x,a) 5 = K .
IT |« IIN IIT

a-x
-=a

The sign convention for KII is as usual KII>0 for u;>0

sides results in displacements at abscissa t on the
sides uyN(x,a,t) and uxN(x,a,t) with near the front,

r = a-t
+ - _ 4 2% 3/2 5/2
uyN - uyN = g KIN(a,x) o Byr + 0(r )
- 4 \/25 3/2 5/2
uxN uxN = g KIIN(a,x) = BXr +0 (r )
E' = E/(1-v2) plane strain E' = E plane stress
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The stress intensity factors are calculated the ordi-
nary way + _

_E 1. YN TUyN
KIN(a,x) = = > lim

4 r-0 \/r (4)
u+ —u—
E' m s XN XN
Kopg(arx) = B2V g0 _xN "%
IIN 4 2 r-o0 \/r

and the corresponding non dimensional weight functions

are
m_(x,a) = KIN(a'X) H T ig-%)
IN ’ N 2
K (a,x)
_ IIN" T m(a-x)
mry(x.2) = N V 73

and similarly mIT(x,a) and mIIT(x,a) using KIT(x,a)/T
and KIIT(x,a)/T.

(5)

II - Numerical calculation by finite elements

2.1 - Calculations were performed using the finite ele-
ment code TITUS, for five inclinations (fig. 2).

B = 90°, 750, 60°, 45°, 30°
and three crack length ratios

a = E_E%EJ@ = 0,25 - 0,50 - 0,75

The strip was long enough for the results at the front
not being influenced by the ends, even for B = 30° and
@ = 0,75 (fig. 1) L/b = 4.

Dissymmetry makes it necessary to model the whole
strip, not only one half.

Around the crack fronts the grid is composed of
8 guarter point elements of 45° each. This angle was
Jjudged sufficiently refined, after a comparison with
24 elements on Strips subjected to a uniform traction.
The size of the crack tip element is less than 2 g of
the crack length (fig. 2).

The code and the grid were checked by calculating the
well known solution for the symmetric problem ( g= 90°)
with a uniform traction.

This is an easy method which can be duplicated by
anybody who can use a finite element two dimensional
code.
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2.2 - As mentioned in Sect. 1, normal and tangential
forces N ang T were applied in 30 to 84 nodes, depen-
ding on the length, on both sides of the crack. In one
Ccomputer run the displacements for all the positions
of N and T were computed.It was then €asy to calculate

the Kij(a,x) by the displacements near the front (4),
and the four non dimensional weight functions (5).

The displacements Were not accurate near the points of
application of the forces N ang T, where they have a
logarithmic singularity. This did not matter for remote
points, but resulted in inaccuracy for the points of
application near the front. This 4dig not influence the
results since according to (2), at the crack front the
direct functions myy and Mrrr are one, while the cros-

sed functions My @nd m are zero.

IT

III - Results for the Symmetric problem B = ggo
\)/\‘P\

3.1 - For this problem (fig. 3) Symmetry results in

Kin  Krpop
N T
and mIN(x,a) = mIIT(x,a) = m(x,a)

- = (6)
MIIN = Mpp = 0
In an infinite plane, from handbooks and (2]

ne(x,a) =\/3 1+ X (7)

The results are Presented with reference to the infi-
nite plane in the form

m(x,a) = |/ ;(l + g) P(E,%)

; = a = X
or with a= g 3 B

mie, o =|/3 (15 (g, q (8)

where P(¢,a) is a polynomial of &, with coefficients
functions of g

TR =R @) v A @ ) e oay) (&2 a5 (§)°(9)

The results for a= 0,25 - 0,50 - 0,75

are presented on fig. 5, with the coefficients A.(a) in
Appendix. 1

The difference with me is very little for o= 0,25; not
negligible, 30% for a= O,50;important, 100% for a= 0,75
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3.2 - Comparison with Tada's formula.
In [2] Tada gives the equation

K
B S _ (X2 - Ta X a
oy~ [1+0,297 \/1- &2 (1-cos Ia ] Frp &3 (10)

FIII (f,%) is the algebraic solution for a strip in mode ITT. It

results from the addition of two symmetric distributions of forces
of period 4b on a periodic array of cracks of period 2b ; this sum
yields zero shear stresses on the lines x = +b, and is the solution
for a strip. It yields the following non dimensional weight function

[
e
=]

h1ﬂ

%

oo

Ta a-x

(11)

<:::]
n
2
o
>l

0
[e]
7]
&l

3
[

0
o
n
nﬂd
oi% | o

As it is not very easy to handle this mror (%,%) the reference to

the infinite plane rather than to the strip in mode III has been
chosen for the expressions (8) of m (£, o )

. X a X a ;
The ratio m (a’b) / nrrr (a’b) has been found in agreement for

X =t a, x =0, but not for the intermediate values of x.

For agreement it should not be 1 everywhere, but it should be
Tada's correcting factor IIT to T between [ ] in equation (10).
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The difference with (11) increases with the length of
the crack. The difference of stress intensity factors

IV - Results for inclined cracks

4.1 - The four non dimensional weight  functions
mij(x,a) or m.j(i,a) (i = 1, 11 ; j =N, T defined

i
by eq (1) were calculated for twelve cases
crack lengths o = as\;n‘i = 0,25 - 0,50 - 0,75
angle B=175- 60 - 45 - 30°

Abscissa € = Z51u
Constant o means a constant ratio of the crack length

to the inclined section of the strip, not a constant
crack length.

The results are given Lv thice sets, fora fixed, of
four dlagrams(flg.6,7,8)¢ﬁe scale varies with the page.
4.2 - The diagrams evidence the following features

- short cracks (a= 0,25) at small inclinations
= Ol o E
(B= 75°-60°) have mye M;rp Very near m, , with MmN’

Myn nNear zero ; this could easily be foreseen
- for a given o, mrN increases with the inclination

(Bdecreasing), rapidly for large o, while Myt is little
sensitive to inclination

- the crossed functions myry and Myp are small compared

to the direct ones, except for long cracks and large
inclinations (a= 0,75 - B = 30°)

- mpoy and Mrp are most often negative ; however MyrN
is positive for small B, and for larger B gets positive
for long cracks.

4.3 - Small values of myry and M,r explain that most

often geometric dissymmetry alone does not result in
important mixed modes.

Some authors have applied the equations for B = 90° to
problems with a* = a3 sin B= 0,20 b and B = 45° - gQo,
Fig. 6 a) b) c) show the error could be negligible for
B= 75°, but not for B= 45 or 60°.
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Negative values of My p can be explained on long cracks

(fig. 1) by the different rigidities of the regions
each side of the crack i on the figure (1b) the crack
is opened by a normal_}ract%pn N, and a Superimposed

traction T results in uyT > uyT > 0 and KIT < 0.+
Similarly in (1c) normal traction N yields u < o0,

: " XN
L. >!ule> 0 and Koy < O.

4.4 - Polynomials Pij(E,a,B) defined by £

1
m;j(6.2,8) = Pis(5,2,8) me= Pij(i,a,ﬁ)\/i {13F)
are presented in Appendix.

4.5 - For a uniform traction 0, on the strip the stress
intensity factors were calculated using the weight
functions, ang directly applying the traction, for
B= 30° and a= 0,25 - 0,50 - 0,75 (fig. 4).

(0]

g .
c -k . =b[§§ 5 m o Sin B+mIT51n B cos B -
IN IT mo.  ©

I
-a \/a - &
a
m sin2B+m sin Bcos B
Kyr = K. +K =|/22 o, L2, =hd de
II IIN "'IIT ma \fa—j_z‘
-a

while for the infinite plane

= Ta in2
K. =0, s B

KI1o= oo\/ﬂa sin B cos B

The results are (B= 30°)

a 0,25 0,50 0,75

KI/KI w.f 1,22 1,81 2,96
® direct 1,24 1,83 2,99
KII/KII w.f 1,11 1,37 1,91
*® direct 1,11 1,38 1,91

The calculated weight functions seem therefore reliable

It is sure that for smallB, KII > KI on account of the
different orders of magnitude of sinB cosB and sin28,

This reversal takes place for B< 30°.
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The importance of the crossed terms is also evidenced
(B= 30°).

& 0,25 0,50 0,75
100 Kpn/K; -3,03 A7,6 -45,9
100 K| /K 0,09 4,15 15,74

The relative importance of KIT compared to KIIN results
from sin Bcos B = \3/4 and sin2 B = 1/4 for B - 30°

4.6 - A similar calculation in bending vields a compa-
rison with the infinite plane.
Let the applied stress on the strip be (fig. 4)
- X _ &
% () =op 2= o,z

(OB = bending stress at the front).
In the infinite plane

=
H o
8
[}
Q
[v0]
n
’_l.
o]
N
Eos)
b

K?I == V Ta sin B cos B

and in the strip a
. ;
KB—K B+KB ) 2a oy E TINSln B+mIT51nB cos B ac
I"IN ®1T T Ta o
a - g
-a
o . &
KB —KB +KB _/22 oy g_mIIN51n28+mIITSln(3COS B g
IT"IIN Y117 T 79 a 5
a - g
-

The results are (B = 30°)

a 0,25 0,50 0,75
K? / K‘I3 1,008 1,172 1,627
B B
KII / KIIw 1,008 1,100 1,421

B B
100 KIT / KI -0,47 -6,88 -26,94
B B 3 .

100 KIIN / KII negligible 1,39 10,94

The crossed terms are rather important for long cracks.
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V - Conclusion

Weight functions for dissymmetrically cracked strips
have been calculated.

Very long cracks have not been studied. The limit for
this problem would be an infinite notch leaving a neck
in a semi infinite plane, on which indications can be
found in (1, 2].

Few results have been previously published on non sym-
metric bodies. This study confirms that geometric
dissymmetry results only in weakly mixed modes if the
load is symmetric and the crack rather short. But
dissymmetry must be taken into account when the crack
is moderately long compared to the dimensions of the
body.

Polynomial expressions have been presented for B3 30° ;
they might be rather different for smaller angles.
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APPENDIX

pPolynomial representations

A - Symmetric problems f= 90° ag 0,75
g€

o

&y 12 £y
P(£,0) = Agla) + (5 Aj(a) + (§) A (@) + () Az(@)
Ag(@) = 0,99237 + 0,30295 a- 1,01300° + 3,6281a

2 3
-0,00155 - 0,13768 a - 1,0127a + 0,46172a

i}

Al(a)

3
Az(a) 0,00572 - 0,43261 o + 2,468SOt2 - 4,0458a

2 3
Ag(a) = 0,00272 + 0,25455 a- 0,442250 - 0,01897¢

These coefficients result from 7 values of o, and are
pretty sure in the limitag 0,75.
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B - Dissymmetric problems g= 75 - 60 - 45 - 30°
a= 0,25 - 0,50 - 0,75

For each angle B, polynomials are defined

i _ £k
Pl] (t)laIB) = kz:o(a) Bk(o’-)

B o
0 kl
i =1, II j =N, T
For @ very near 2zero, whatever B8 is, the solution is
that of the infinite plane. Therefore

Pry = Prrr =1 Boo T + Box = O k#0
P

(p = Py = 0 all By =0

The following tables of coefficients could not be
checked for other B, @ than those mentioned. They are
sure for these values ; interpolation for a = 0,125 =
0,375 - 0,625 is questionable. Other calculations would
be useful.

B, (@) =

T Mo

- B = 75° - Values of coefficients By,

k
1 0 1 2 3 4 5

1 0 0 0 0 0
0,23420| 0,17728|-0,08813 -0,81588|-0,25314| 0,75192

-0,60560|-1,9853 | 1,0050 1,6628 | 1,1532 |-1,1999
3,5840 | 1,0138 |-2,2980 -1,2916 |-1,6752 | 0,60201

w N PO

1 0 0 0 0 0
0,28080|-0,03518| 0,09632 -0,74078|-0,25541| 0,64907

-0,50080|-0,73352|-0,80117 2,6412 | 1,4784 |-2,0516
3,0848 |-1,1651 | 0,80730 -2,5126 |-1,9355 | 1,6651

IIT

w N RO

0 0 0 0 0 0
-0,12188| 0,03538| 0,01993 0,08817| 0,03314{-0,05296

0,49480| 0,05346(-0,17133 -0,52937|-0,20056| 0,34333
-1,3727 | 0,55726| 0,48318 0,58624| 0,24389|-0,48507

w N PO

0 0 0 0 0 0
-0,00269| 0,09373|-0,16073 -0,01083| 0,08627|-0,00742

-0,30302|-0,27033| 1,0041 0,10073|-0,52586| 0,00410
0,01188| 0,79492|-1,5551 -0,01087| 0,82864|-0,08502

IIN

w N PO

152




- B = 60° - Values of coefficients Bk

FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

1
1 k 0 1 2 3 4 5
PIN 0 1 0 0 0 0 0
—_ i § 0,62833 |-0,10445|-0,14047|-0,22072|-0,15846] -0,00830
2 -1,9736 |-1,4611 1,4887 [-0,92234| 0,61610{ 2,3543
3 6,2251 |-0,05856|-3,0883 0,97856|-1,6669 | -2,5267
PIIT 0 1 0 0 0 0 0
1 0,17567|-0,12920| 0,28720|-0,13108|-0,25059| 0,05799
2 0,25200({-0,68996|-1,7654 0,66700( 1,6156 |-0,13386
3 2,1333 |-0,67792| 1,5999 |-0,86087|-2,2407 0,08918
PIT 0 0 0 0 0 0 0
— 1 -0,26817| 0,06111| 0,02719| 0,23937| 0,09166|-0,14445
2 1,2369 0,09414|-0,33596(-1,3971 |-0,51670| 0,88060
3 -3,0531 0,96216| 1,2552 1,5156 0,56129|-1,1931
PIIN 0 0 0 0 0 0 0
1 0,01014| 0,23965{-0,27013|-0,20708| 0,09287| 0,12928
2 -0,62588|-0,93750( 1,7929 1,2396 |(-0,67273|-0,76505
3 0,29744| 1,8614 |-3,0646 |-1,1651 1,3831 0,64368
- B = 45° - Values of coefficients Bkl
k
1 0 1 2 3 4 5
PIN 0 1 0 0 0 0 0
— 1 0,48500|-0,22710( 1,1316 |-0,95061|-1,3927 |0,99126
2 0,33600|-2,5150 |-5,2523 2,3836 7,2683 |=2,3143
3 6,5888 0,01520| 2,8773 |-2,2328 |-9,6985 2,4915
PIIT 0 1 0 0 0 0 0
1 0,12280(-0,35683| 0,44282| 0,28684|-0,27239|-0,21191
2 1,1616 |-0,16206(-2,9710 |(-1,4894 2,0469 1,3575
3 0,82560(-0,45416| 2,8600 1,4534 |-3,0764 |-1,5720
PIT 0 0 0 0 0 0 0
—_— 1 -0,28908| 0,00670|-0,15776| 0,34946| 0,29829|-0,19299
2 1,5312 0,45772| 0,46470|-2,1578 |-1,6167 1,2317
3 -4,4198 0,70288| 1,6541 2,4007 1,5547 |-1,7701
PIIN 0 0 0 0 0 0 0
R — 1 0,03975| 0,43319|-0,40938(-0,23506| 0,19274|-0,03476
2 -0,93006|-2,1560 2,8662 1,6575 |-1,3683 0,01363
3 1,2679 3,3085 (-5,4173 |-1,8967 2,6642 |-0,04213
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- B = 30° - Values of coefficients By 1

k
1 0 2 3 4 5
PIN 0 1 0 0 0 0 0
——= 1 1,1325 |-1,4919 | 3,1577 |-1,4597 |-3,1683 1,8889
2 1,2552 | 0,46180|-17,933 | 4,7154 |17,987 |-6,6785
3 |11,452 |-4,6408 | 13,741 |-4,0558 |-24,378 | 7,9832
Prip 0 1 0 0 0 0 0
— 1 0,36087|-1,1171 | 0,82720{0,68046 |-0,36369 |-0,34482
2 2,5240 | 2,1001 |-6,2876 |-3,7311 | 2,7156 | 2,4449
3 |-1,5531 |-1,6325 | 6,7692 | 4,0774 |-4,2958 |-3,1287
Pl 0 0 0 0 0 0 0
s 1 |-0,20498| 0,20075|-1,0136 |-0,01459| 1,0874 | 0,00776
2 1,3758 |-0,54976| 5,1828 |-0,59557|-6,0296 | 0,23352
3 |-5,5845 | 1,3171 |-1,0197 | 0,82271| 5,7977 |-0,80721
Prin 0 0 0 0 0 0 0
1 0,08507| 0,59025| 0,10555|-0,25095|-0,44093|-0,15426
2 |-1,2558 |-3,7241 | 0,41428| 2,2714 | 2,1035 | 0,58509
3 4,4148 | 4,8681 |-5,7693 |-3,3807 |-0,46567|-0,19678

— FIGURE 1 -
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FIGURE 5 - SYMMETRICALLY CRACKED STRIP - 8 = 90° -
(a = 0,25 - 0,50 - 0,75)
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- FIGURE 6 - a = 0,25
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- FIGURE 7 -
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- FIGURE 8 - a = 0,75
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