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UNIVERSAL WEIGHT FUNCTIONS FOR LOADINGS
AND SCREENINGS OF CRACKS

H.O.K. Kirchner'

Since for any particular specimen and crack geometry
the stress intensity vector must be a functional of the
loading or screening which are both of vectorial
character, the stress intensity vector can be found by
integration over the product of the dislocation and
force density with two universal tensoria| weight
functions. The same technique is applicable to trans-
formation and thermal stresses. Generalizations to
three-dimensional universal weight functions are
possible.

INTRODUCTION
_ UN

For a two-dimensional situation the fact that the crack tip feels an
elastic force implies that stress and distorsion near the crack tip must
be proportional to 1/Vr, because the driving force must be obtainable
as a surface integral over the energy-momentum tensor (Eshelby (1))
which has the dimension of an energy density. In terms of the stresses
0.2 acting across the crack plane (x =0, x1> 0) the proportionality
constant between stress and 1Nr, knowh as stress intensity factor may
be expressed as

Ki = lim (2nx,)'/2

' x1—'0

cII.2(x1 ,0) (1)

Ky, K,, K, are the stress intensity factors for crack loading modes I,
I "and™ 11, respectively. The stress intensity vector Ki in eqn. (1)
depends on the geometry of the specimen, the loading ' condition and
the presence of dislocations.
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Every elastic state can be described by an arrangement of
loadings f_(x) and/or the presence of dislocations with Burgers vector
b_(x) whete x=(x X,) is a two-dimensional vector. More precisely,
then, the stress intensity vector must be a functional of the loading
by fS and the screening by bS in the form

Ki[geometry; fs(x); bs(x)] (2)

Here fS(x) is the source of stress according to

al.cis + fs =0 (3)

and bs(x) is the source of distorsion B according to

bi = ejkaﬁ'ij/axK (4a)

where €., =—e.. = 1 and ¢ = &, =0. Eqn. (4a) is the two-dimen-
sional form of“the morefami?iar three-dimensional version

o =

. ejktas iJ./axK (4b)

where o. is the dislocations density and €. the totally antisymme-
tric tensor. In eqn. (4a) b. js a Burgers vectlr density with dimension
llength/area.] :

For brevity we have suppressed surface loadings and surface dis-
locations, and the surface boundary conditions corresponding to eqns.
(3,4), but they can always be thought of as generalizations or rather,
specializations of fS and bs.

WEIGHT FUNCTION TENSOR FOR LOADINGS

Bueckner (2) was the first to notice that for the case of unmixed
loadings and elastic isotropy the functional behaviour of (2) implies
that it must be possible to write the stress intensity vector as

Ki = J'Fis(geometry;a;x)fs(x) d2x (5)

where Fi (geometry;a;x) is a weight function that depends on the
geometry; the crack length a, and the coordinate X, but is independent
of the loading fs(x) itself.

Rice (3) gave a derivation of F. much simpler than Bueckner’s
original one (2), but in the following we present an even simpler one:
The elastic driving force dW/da, with W being the elastic energy, is
known (4,5) to be a quadratic form in the stress intensity vector

dW/da = (sn)"Ki(B")”Kj (6)
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where (8_1)i‘ is a 3x3 matrix with dimension of a compliance. It is
the inverse of the prelogarithmic factor of dislocation lines.

W = biBijbj'nR/ro (7)

where R and r_ are the outer and inner cut off radij (5). It can be
obtained numerically (6) for any elastic anisotropy and any orientation
of the crack front - what is required is the solution of a sextic
polynomial. |n eqgn. (7) b, is actually the Burgers vector of a singular
dislocation line with dimension llength] .

On the other hand the elastic energy of the cracked body can
also be written as

w =21fus(x)fs(x) d2x (8)

where us(x) is the displacement.

Consider now one and the same specimen geometry but with two
different loadings (+) and (-). The total stress intensity vector, dis-
placement and loadings are

K? + K_i (9)
u o+ U (10)
s

i -

fs + fS (11)

Equations (6) and (8) for the sum of the two loadings read

aW/da=(8n) T (kK +k7)(BT) (K *akoyol TGt (0 +uZ (T o ()] g2y
i i 2 da S s s s (12)

The purely quadratic terms of (12) cancel because, by definition,

(8n) KBy Kt - 1d Sut()f(x) dox (13)
i ijj 2 da s s
-1 - -1, - 14 o
(8n) KI.(B )inJ. =2—d—afus(x)fs(x) d2x (14)
Since
-1 =1
(B™).. = (B™).. (15)
also " i
PP | - -ro=1 +
Ki(B )”.Kj = Ki(B )inj (16)
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and of egn. (12) there remains only

4,

280 k'8 ko = 1
! W1 2 4a

S0 + u(0f 6T dex  (17)

According to the theorem of reciprocity the two terms under the
integral are equal. The differentiation d/da acts only on the displace-
ment field, so that

-1 1 _ du;(x) "
2(8x) Ki’(B )inj =7 fL(x)d2x (18)
da

If eqn. (18) is written not for one reference state f  but for three
reference states loaded by

£ (2 (3) -
s s s
with displacement and stress intensity vectors
u(1)’ u(2)’ o3 (20)
s s s
K(‘,U, K(i2)’ K(iS) (21)
one has the three equations
-1 4,010 (2) dust)(x) +
2(8m) KU(B™T). . KZ =S () g2y z=1,23
i ijj da s (22)
If the three stress intensity vectors K(i”’ K(iz), K(I.B) are written as a
matrix,
K(J.Z) = K (23)
Egn. (21) can be solved
-1(z) du(sz)(x)
K. =f4xB. (K™ )"—=2 _f (x) g2x (24)
i ij j - s

where we have now suppressed the superscript (+) for the state of
interest. Comparison with egn. (5) shows that the weight function is

(z)

F.(am) = 4nB (k1D P (25)
is 2%/ = 4xB;; -
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2) /aéShough F. (a;x) was obtained from three reference states fg”,

fol, £, eqgn. ( implies that it js independent of the three reference
s?ates chosen. This is so because both the matrix K and the displace-
ment u_ are linear in the loadings. Bueckner’s (2) function for
unmixed” loading was a universal (vector) weight function; as it stands
Fis is a universal (tensor) weight function for loadings.

WEIGHT FUNCTION TENSOR FOR SCREENINGS

In the derivation of the weight function tensor F. (a;x) of egn. (25)
the existence of a displacement field u_(x) was asstimed. According to
eqn. (8) this displacement is conjugate to the forces f (x) with
respect to the energy W. In the presence of dislocations (tRat collo-
quially are said to "screen" or "shield" the crack) the elastic energy
is not only the one of eqn (8), which, as it refers to an external
loading f_(x) is called the external energy, but there is also a contri-
bution from the presence of the (two~dimensional) dislocation density
b_(x). Since b (x) is, according to eqn. (4), the source of internal
stresses, that” contribution is often called '"internal". According
to the theorem of Collonettj (7)  there s, however, no interaction
between the applied stresses and the internal ones, there is no cross
term in f_(x) and b (x) that contributes to W. The elastic energy,
with both ﬁ*s(x) and bss(x) present is given by

w=1, LugGIf () + 8 (b (x)] d2x (26)

2

The quantity Q)S(x) is the dislocation potential (8), since it is
conjugate to b (x) with respect to W. It is known as the Airy vector

stress function”and is related to the stresses by
G4 = —a(01/ax2 Gip = a(2!2/ax1 (27)
It should be noted that the stresses can be obtained either from
eqn. (27) or from Hooke’s law and the displacement gradient. Essentially
one can say that it is as easy or difficult to find the displacement

us(x) for an elastic problem as it is to fing the Airy function (Ds(x)
for the same problem.

Because the form of eqgn. (26) s symmetric with respect to
us(x) and @ (x), and symmetric with respect to f (x) and b_(x), one
can repeat "the argument of the last section almost word by~ word to
define a new universal (tensor) weight function for screenings. In
analogy to eqgn. (25) it is

d
S

) -1\(2)
Dis(a,x) = 41tB“.(K )j ”

(28)
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and the generalization of eqn. (5) to the presence of both loadings
fS(x) and a dislocation density bs(x) being present js

K, = f[FiS(a;x)fs(x) - Dis(a;X)bs(x)]de (29)
with the two universal tensor weight functions given by egns. (25) and

(28).

PRECIPITATES AND THERMAL STRESSES

Since every elastic state can be thought of as being caused by a
distribution of forces f (x) and/or dislocations b (x), the two weight
tensors Fi and D.s cover every possible situation.slf, for example, one
wants to “consider” solute atoms that are characterized by a dipole
tensor M__, which has the dimension of an energy (8), the analogy of
eqns. (S)S%nd (25), or of (5) and (28) becomes

K, = fF;iS(a;x) M, (x) d2x (30)

where
(z)
t -1(z) d aus
Pis(a;X) = 4nBij(K Pt == (31)
da dx
t
A dipole tensor M which is proportional to the unit tensor
describes a situation where temperature gradients are present in a
thermoelastic material. Since P." is obtained by differentiation of E.
with respect to X., the influéice of thermal stresses on the stress
intensity vector of' a cracked specimen is trivial S0 solve. It is not
necessary to solve the thermoelastic equations, but the thermal and
the elastic problem split Up conveniently: once the (easier) thermal
problem is solved and the temperature gradients dT(x)/dx_ have been
found, they can be put proportional to fictional forces f (x). For these
the elastic part of the problem is solved with the universal tensor
weight function Fis(a;x).

DISCUSSION

Although it is true that it is as easy to find §(x) as it is to find
u (x) or its gradient du (x)/dx,, this is actuale of little help as long
as the displacement u (X) and fts derivative with respect to the crack
length a is not known. So far the universal weight functions seem to
be explicitly available only for infinite isotropic specimens with half
Plane cracks. The construction of F. (ajx) and D. (a;x)  for more
complicated specimen geometries, especially for inite specimens,
remains a challenging problem. One can, however, say that once
Fis(a;x) has been found (or, what amounts to the same, Dis(a;x)), any
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loading can be put on and any dislocations or precipitates can be put
into the specimen, or the specimen can be heated, and the influence
on K. of all that can be found by mere integrations - without solving
the complete elastic problem. One can also employ the freedom one
has in choosing the reference state to get a little more than just the
stress intensity vector. The method of Cardew, Goldthorpe, Howard and
Kfouri (10) to find the first nonsingular term of the stresses around a
crack amounts to selecting the reference state in a clever way and
using the idea of reciprocity which is the foundation of the present
paper.

THREE-DIMENSIONAL CRACKS

Rice (3) was the first to notice that the basic idea of Bueckner (2)
can be extended to three—dimensionalsituations. Recently he elaborated
this idea in a series of papers (11,12,13) and also Bueckner (14)
discussed three-dimensional weight functions. For a two-dimensional
situation the force on the crack is obtained by taking the derivative
d/da with respect to the crack length. For the three-dimensional
situation this has to be replaced by the functional derivative d/da(s)
where s is the parameter along the crack perimeter. The situation is
similar to finding the self-force of a curved dislocation (15). Although
the three-dimensional theory s analogous in its development to the
two-dimensional one, in view of the fact that finding the two-dimen-
sional weight functions for non-trivial geometries is already difficult,
it seems unlikely that the required three-dimensional weight functions
could be constructed easily for, say, finite cracks in finite bodies. A
possible way for such constructions might be to link  the weight
function approach to the integral equation approach (16).
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