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COHESIVE CRACK TIP MODELLING OF PLASTIC FRACTURE

Alberto Carpinteri*

The competition between plastic collapse at the ligament and brit-
tle crack propagation is investigated on the basis of dimensional ana-
lysis and cohesive crack model. The transition from a collapse to
another one is described by the brittleness number s = KIC /oy\/T)_,
which is a function of fracture toughness, yield strength and speci-
men size. Size-scaled three point bending specimens of polypropy-
lene were tested and analyzed. A simple plastic collapse at the liga-
ment occurred for small size scales, whereas the transition from
plastic collapse to brittle fracture is reproduced by the BCS crack
model satisfactorily up to the asymptotic situation of very large
specimens, for which LEFM is totally valid.

INTRODUCTION

Due to the different physical dimensions of strength [F] [L]™ 2 and fracture tough-
ness [F] [L]™ %2, scale effects are always present in the usual fracture testing of com-
mon engineering materials. This means that, for the usual size scale of the laboratory
specimens, the ultimate strength collapse or the plastic collapse at the ligament tends
to anticipate and obscure the brittle crack propagation.
Such a competition between collapses of a different nature can be described through
a cohesive crack tip modelling. The ductile-brittle transition when the specimen size
increases is captured by the well-known BCS-model (Bilby et al (1), Heald et al (2)).
The substantial assumption is the transition from ‘‘stress vs. strain’ to “‘stress vs.
displacement’” constitutive law when the ultimate tensile strength is locally achieved.
The experimental results (Carpinteri et al (3)) obtained from size-scaled poly-
meric three point bending specimens (width = 1/2, 1, 2, 4, 8, 12 cm) are predicted
theoretically. For each value of width, five different relative crack depths are con-
sidered: a/b = 0.1, 0.2, 0.3, 0.4, 0.5. Except for the larger specimens, the fracture
process was stable and very ductile, but no necking near the crack was noticed. The
plastic zone in front of the crack tip presented a strip-shape. A simple plastic col-
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lapse at the ligament occurred for small size scales (b = 1/2, 1, 2 cm), whereas the
transition from plastic collapse to brittle fracture is reproduced by the cohesive
crack model satisfactorily up to the asymptotic situation of very large specimens, for
which LEFM is totally valid.

EXPERIMENTAL PROCEDURE (3)

The experimental material is polypropylene Moplen® D 60 P, originally provided in
slabs 100 x 200 x 4 cm. The main properties of the material are:

Melt flow rate: 0.46 g/10' (ASTM, D 1238-73)
Young’s modulus: 1400 MN/m2 (ASTM, D 790-71)
Yield strength: 33 MN/m? (ASTM, D 638-77)
Density: 0.912 g/em® (ASTM, D 1505-68).

Three point bend specimens have been obtained from these slabs. Specimens main-
tained the original thickness of slab (4 cm), but their width b and length £ have been
varied so that the constant ratio 2/b = 4 always resulted. The following values of
width b have been chosen: 0.5,1,2,4,8,12cm, which nearly constitute a geomet-
ric progression. The bending tests have been performed by a displacement controlled
Instron machine. Thus the loading velocity was controlled so that all the utilized
sizes were subjected to the same strain rate, by applying the formula:

6V,b

€= 2

where: Vj = velocity of the point of load application. Such a formula is strictly
applicable to unnotched specimens. The strain rate was € = 0.001 sec” !. In the
case of polymers it is important to work with constant strain rate, to avoid effects
on yield strength and fracture mechanics parameters.

For every value b of the specimen width, five different relative crack depths
have been utilized: a/b=0.1, 0.2, 0.3, 0.4, 0.5.

The tests were carried out at 23 °C.

LIMIT ANALYSIS AT THE LIGAMENT
The competition between plastic collapse at the ligament and brittle crack propaga-

tion can be easily proved by considering the ASTM formula for the three point
bending test evaluation of fracture toughness (Fig. 1):

PR a
= 1)

with:
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At the crack propagation condition eq. (1) becomes:
P2 a .
KE - tb3/2 f (—b—) s ; (2)

where P, is the external load of brittle fracture. If both members of eq. (2) are
divided by crybl/2 we obtain:

Kic P8 a
=g=— f— s (3)
o b2 o tb? (b)

y y

where s is a dimensionless number able to describe the brittleness of the specimen
(Carpinteri (4, 5)). Rearranging of eq. (3) gives:

PfQ s
p— 4)
aytb a
i
b

On the other hand, it is possible to consider the non-dimensional load of plastic
hinge formation at the ligament:

2

P L a
i
oytb2 b

Egs (4) and (5) are plotted in Fig. 1 as functions of the crack depth a/b. While the
former produces a family of curves by varying the brittleness number s, the latter
is represented by a unique curve. It is easy to realize that plastic collapse precedes
crack propagation for each crack depth when the brittleness number is higher than
the critical value s; = 0.75. For lower s numbers plastic collapse anticipates crack
propagation only for crack depths external to a certain interval. This means that real
fracture phenomena occur only for sufficiently low fracture toughnesses, high yield
strengths and /or large structural sizes. It does not matter the single values of ch’ o,
and b. What is important is only their function s.

Recalling eqs (4) and (5), we can obtain the ratio between fictitious and real
fracture toughness, which is equal to the ratio between load of plastic collapse, Pp,
and load of crack propagation, Py, when Pp <P, and equal to unity when Pp > Py

K, P 1 a\? (&
P -
—=—= (1 ——) f(——) , for P, <P, (6-a)
Pf
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—=1, for Pp > P, . (6-b)

Combining the definition of brittleness number, eq. (3), and eqs (6), it results:

Kfc a\Z /a

={1-— s & A
2 (1 b) f(b) 5 for Pp P, (7-a)
y

f
B .
abm—s, or > > Pr (7-b)
y

Eq. (7-a) is represented in Fig. 2 as a bell-shaped curve vanishing for a/b=0 and
a/b = 1. It presents a maximum for that value of crack depth for which the fracture
curve s = sg is tangent to the plastic flow curve in Fig. 1. More precisely, for s > s
eq. (7-a) is valid for each crack deptha/b, whereas for s < sy ed- (7-a) is valid for
external crack depths and eq. (7-b) for central crack depths.

Eq. (7-a) is represented also in Fig. 3 by varying the specimen width b. The
dark shaded area is where the curves a/b=0.1toa/b= 0.5 are concentrated. Itis a
very narrow strip, specially for not too large sizes b. When 8> 85 the parabola (7-a)
is replaced by the horizontal straight line K{C = KIC. The experimental points pre-
sent a course which is only initially similar to that of eq. (7-a). This means that, only
for small specimens (b = 0.5 / 1.0 / 2.0 cm) the collapse can be perfectly described
by a plastic flow at the ligament. By increasing the size scale a transition occurs from
plastic flow towards a true LEEM collapse. For b = 12 cm, however, the latter has
not been reached yet, since the experimental points are still ascending. It is difficult
to predict the true value of fracture toughness exactly. On the other hand, if the
experimental work went on with larger specimens, it would be possible to standar-
dize an extrapolation technique with a smaller number of specimens.

BCS - COHESIVE CRACK MODEL

An attempt is done to describe the ductile-brittle transition through the BCS-cohesive
crack model (1, 2). The following expression for the fictitious fracture toughness
is assumed:

K!, =of (ra)'? F(a/b), (®)

where of is the nominal stress at failure and F is the shape-function in the Tada-Paris-
Irwin notation (6). If it is recalled the equivalence:

a 2f(a/b)
o)
Ly
b

between Tada-Paris-Irwin function and ASTM function, the BCS fracture toughness:
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a\ 2 m K12C
KE . =(ma)!/? F(—) — o_cos” Mexp— , (10)
e ol n Y 802a F2 (a/b)
is transformed as follows:
K{C 4 a 9m2s?
_ -1
———f(-—) cos ;exp— - (1)
ayb‘/2 3 \b 3212(a/b)

Eq. (11) is plotted in Fig. 7 as a function of crack depth a/b and varying the brit-
tleness number s. The experimental points are on the limit analysis curve for b =1
and 2 cm, whereas they fall below for larger specimens.

Eq. (11) is represented also in Fig. 3. According to the BCS model, it is neces-
sary to assume a true ch value to be inserted into eq. (11). The value Kj = 5.5
MN/m3/? is that which best-fits the experimental results. The family of curves a/b=
=0.1 to a/b = 0.5 is more spread for small than for large sizes in this case. The oppo-
site occurs for the limit analysis prediction. It is very clear from Fig. 3 that a simple
plastic collapse at the ligament occurred for small size scales (b=0.5/ 1.0 /2.0 cm),
whereas the transition from plastic collapse to brittle fracture is captured by the BCS
model satisfactorily, specially for shallow cracks (b=4.0 / 8.0 cm). The asymptotic
situation of very large specimens is described by LEFM consistently (Carpinteri and
Sih (7)).

SYMBOLS USED

a = crack length (cm)
b  =beam width (cm)

K. = stress-intensity factor (MN/m>?2)

1

KlC = fracture toughness (MN/m3/2)

K{C = fictitious fracture toughness (MN/m3/2)

Q = beam span (cm)

P = external load (MN)

B. = external load of brittle fracture (MN)

Pp = external load of plastic hinge formation (MN)
s =Kc /ayb”2 = brittleness number

t = beam thickness (cm)

of = nominal stress at failure (MN/mz)

By = yield strength (MN/m?)
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Figure 1 Interaction between plastic collapse and brittle crack propagation.
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Figure 2 Fictitious fracture toughness vs. crack depth.
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Figure 3 Fictitious fracture toughness vs. specimen width.
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