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NUMERICAL AND EXPERIMENTAL DETERMINATION OF STRESS INTENSITY
FACTORS IN A 20 kHz RESONANCE SYSTEM

A. F. Blom', A.Hadrboletz'® and B.Weiss®™'

To determine the threshold stress intensity
factors for fatigue crack growth it seems advan-
tageous to adapt high frequency resonance test
methods (up to 20 kHz) to reduce the required

test time .However, in such techniques the initial
computation of the stress intensity factor did

not incorporate the peculiarities of a resonance
system. Dynamic stress intensity factors in .a 20
kHz resonance system are determined by means of a
direct integration dynamic finite element analysis
and experimentally with a modified compliance test
method. The effects of closing and opening of the
crack tip at tests performed at R=-1 are outlined.
These findings were applied to the evaluation of
threshold data of Cu- and Al-alloys.

INTRODUCTION

During the last years increasing interest appeared in methods for
measurements of crack growth phenomena at extremely low growth
rates and for the determination of threshold values of crack
growth under cyclic loading invarious environments for a variety
of pure metals and technical alloys (1).

To reduce the experimental effort for such types of measurements
test-procedures have been suggested which employ increased cyclic
frequencies e.g. 107 to 104 Hz (2,3). In particular, test methods
have been developed which involve the cyclic loading of suitably
dimensioned specimens at a resonance frequency of approximately
26 kHz. A review of the application of these 20 kHz resonance
method%3for the determination of crack growth rates (da/dN) down
to 10 3m/cycle and of threshold values (AKTh) has recently been
presented (2D. For the computation of stress intensity factors

K from the 20 kHz-test results initially the same correction
functions have been applied in the literature to static tests
eq. 1 (4) without taking into account the peculiarities of the

K= Ogp Mo v(2® ....... (1)
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resonance test procedure. Initial attempts to account for the
effects of the presence of a crack on the resonance behaviour of
a specimen excited to longitudinal vibrations have been described
in Ref.(5). More recently, dynamic stress intensity factors com-
puted by finite element methods have been published by Hoffelner
et al. (6) who limit the validity of their results to loading
conditions R=0.

The aim of the present study was to determine the dynamic stress
intensity factors and the appropriate correction function Y (2a/B)
first by means of a finite element computation procedure and
secondly by measurements using a modified compliance test method.
The test conditions involved longitudinal resonance vibrations

at 2o kHz of a center-notched flat plate specimen for a stress
ratio of R = -1. The validity of this approach is demonstrated by
test results obtained from specimens of pure Cu and an Al-alloy
(Al-2024),

TEST METHOD

The experimental tést system used for these measurements has been
described previously (5,7,21). The mechanical resonance system
operating at 2o kHz consists of a piezo-electric transducer
coupled to mechanical amplitude transformers and half-wave length
coupling pieces. The half-wave length dimensioned specimeéen is
suitably coupled to this mechanical resonance system and excited
to longitudinal push-pull vibrations. The strain distribution
along the length of the specimen is sinusoidal with a maximum of
the strain occuring in the middle of the specimen, Fig.1. In the
particular test. system the specimen is cyclically loaded under
zero mean stress (R = -1), The strain distribution in the
resonance specimen is compared with that of a conventionally
loaded specimen in Fig 1a and 1b, respectively.

EXPERIMENTAL K- CALTBRATION

From the well known relationship for the crack extension force G
(8)

_ 1 9 dC
G _TFTE ............ (2)
one can obtain with
2
6= (v £5 L ()

the following expression for the function Y(%% as given in eq.l.

2ay2 _ ED dc
FEY = = YZary < 2 W
B B
To determine Y (2a/B) the compliance C
=g (5)

was measured using specimens of constant width containing
centered saw cuts of various lengths to simulate center cracks
(9). The experimental procedure to measure the crack opening
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displacement of a center-notched 20 kHz resonance specimen was
similar to that described by Schmidt and Paris (2) and Gan and
Weertman (1lo) for conventional specimens. A miniature strain gauge
(HBM type LY 11/0,6/120) with an active gauge section (1= 0,6 mm)
smaller than the width of the saw-cut (0,8 mm) was placed over

the center of the saw-cut (Fig.2). The crack opening displacement
was then calculated from the measured strain signal €,

v = 1'&1 ..... (6)

The direct determination of the applied force or stress is not
possible in a resonance specimen (5). It can be calculated under
certain assumptions e.g. from the displacement amplitude Uo at the
ends of the vibrating specimen or from the strain in the center
of the specimen, Fig.l. In the present investigation, however,

the stress amplitude 6n was deduced from the measured strain g,

in the plane of the saw-cut. As a result of the decreased cross-
section in the plane of the crack (saw-cut) an excess of strain
occurs in comparison to a defect-free specimen. The distribution
of this excess strain along the length of the specimen was
measured with a multisection strain gauge (Fig.2) (HBM type KY 21,
10 sections 1o mm total length). The measurements were carried

out both with specimens containing a centered saw-cut and with
specimens containing symmetrical cracks emanating from a spark -
machined center notch. In the latter case the loading amplitudes
were chosen sufficiently high to ensure that K ax 1s greater

than Kgp (110

The results of this investigation are shown in Fig.2 for a
specimen containing a saw-cut of the dimensions 2a/B = O,47. It
can be seen that the local increase in strain corresponds pre-
cisely to the decrease in cross-section as compared with an
unnotched specimen. The strain increase is distributed over an
area large enough to be recorded with the miniature strain gauge
of an active length of 0.6 mm. Therefore in this case the force
F can be expressed as

F = Ee, DB (7)

The strain gauges 2 and 7 were applied to monitor the occurence of
transverse vibrations.

The experimental determination of the function Y(2a/B) was
deduced from a plot of €qvs &,values obtained from copper
specimens (B = 15 mm) containing saw-cuts of various lengths,
Fig.3a. Sincetq is proportional to v and €, is proportional to

F the value of C can be obtained as a function of 2a/B by re-
plotting the data of Fig 3a as shown in Fig 3b. Invoking the
relationship of eq.4 the correction function Y(2a/B) follows
from the curve shown in Fig.3b and is shown in Fig. 3c for a
center notched specimen loaded under R =-1.Similar results were
obtained for center cracked specimens within a scatterband of 5%.

Measurements with other metals and alloys (e.g. Cu of different
degrees of strain hardening, Al-alloy 2024) indicated that the
determined relationship 1is essentially independent of the specimen
material.
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For the determination of A K center cracked specimens were used.
Hereby the strain distribution along the specimen was measured
since there could be differences in the response in tension and
compression, respectively. These measurements were performed in a
similar way as described for the specimens containing a central
saw cut, Fig.2. The experimental results obtained from these two
types of specimens revealed that the local increase in strain is
less in the specimen containing the crack than in -the specimen
containing the saw-cut.

This observation may be explained by the fact that in a specimen
containing a narrow crack the contribution to.the local increase
in strain is different in the tension and compression half cycle

as can be shown schematically in Fig.lta. In the compression phase
the cross-section of the specimen is reduced essentially only by
the size of the initial notch (introduced by spark-machining),
while in the tension phase the remaining cross-section is given

by the size of the initial notch added to the length of the cracks.

The strain distribution was determined for different crack lengths.
As an example the strain distribution in a specimen containing a
crack of 2a/B=0.47 is shown in Fig. La. From the above measure-
ments a further correction function ¢ was determined as plotted

in Fig. 4b for different ratios of 2a/B and 29 /B. '

DYNAMIC FINITE ELEMENT ANALYSIS

Although the test specimen is subjected to a non-symmetrical
displacement the lowest symmetrical mode is achieved in the ex-
perimental setup. In the numerical model, Fig.5, a coupling
element is used to achieve the symmetrical mode. The properties
of the coupling element is derived in Ref.(12) where also a
detailed description of the FEM-analysis is given. Since the
specimen contains a crack which alternatingly opens and closes
the problem is nonlinear. For thisreasm a mode superposition
analysis is difficult to perform. Thus, a direct time integration
technique is used. The specimen is studied at its lowest
eigenfrequency. Therefore an implicit method ought to be used.

The most known implicit direct integration method is probably
Newmark's constant-average-acceleration scheme (13). This
technique does, however, lack numerical dissipation i.e. the
energy in the system is preserved why the false eigenmodes
introduced by the chosen element mesh are not damped but super-
posed to the physical modes. The new ®-method by Hilber (14,15,
16) does allow numerical dissipation. Therefore this technique is
used here. The algorithm is implemented in the finite element
code GENFEM (17,18,19).

The opening and closing of the crack during each load cycle is

numerically taken into account by means of linear constraints.
The displacement of one side of the crack surface uq is written
as the sum of the displacement of the other side of the crack
surface ujp plus the crack opening § . When the force over the
crack is positive § is let free and the crack will open. When

the force over the crack is negative 8§ is prescribed to zero

and the two crack surfaces follow each other. The finite element
mesh is shown in Fig.5. Linear constraints are used where the
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mesh is refined so that continuity is preserved between elements.
Isoparametric 8-noded elements are used and to achieve the ex-
pected r~ 2_gingularity at the crack tip the elements adjacent
to the crack tip are degenerated into triangles with the mid-side
node in the quarter point (20). Stiffness and damping properties
are chosen so that the eigenfrequency for the system coincides
with the eigenfrequency of the test specimen alone. The cal-
culated eigenfrequency of the system is £ = 17125 Hz whereas
measurements on the test specimen give £ = 17115 Hz.

The timestep in the direct integration is chosen to 1/20 of the
period for the lowest eigenmode, i.e. At= 1.14/f= 2.92 107 6s. The
transient response is damped to less than 10/00 in three periods.
A1l calculations are performed after five periods to ensure
stationary conditions. Each calculation thus consists of 1loo
time-steps.

To find out how much the dynamical response of the specimen is
affected by the opening and closing of the crack three sets of
calculations were performed. The specimen was analysed without
any crack at all, i.e. a solid specimen, then it was analysed
with a crack but without the control of opening and closing

discussed above, i.e. R>0, and finally it was fully analysed
with controlled opening and closing of the crack, i.e. R = -1.

Results from such calculations are shown in Table 1 for two
different crack lengths, 2a/B = 0,25 and 2a/B = 0,5. It can be
seen that the influence of the crack on the dynamical response

is small as the mass-forces mainly occur in the ends of the
specimen where the acceleration is largest.Comparisons with

static FEM calculations show a negligible difference. For the

case with a short crack, 2a/B = 0,25, we find that the influence
of the opening and closing on the dynamical response is negligible
whereas for larger cracks, 2a/B = 0,5, there is indeed a signi-
ficant difference between tensile and compressive response.

TABLE 1 - Dynamical finite element results.

massive 2a/B = 0,25 2a/B = 0,5
specimen R=0 R=-1 R=0 R=-1
U, am 19,85 19,92 19,90 20,21 20,03
€max 0/o00 0,395 o,407 o,4ol 0,465 o,480
€min %/00 -0,395 -0,407 -0,399 -0,465 =-o0,400
bmax pm - 2,68 2,68 6,50 6,34
$nin am - -2,68 o -6,52 o
DISCUSSION

Various correction functions obtained by different procedures are
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plotted in Fig. 6. Curve 1 is valid for a semi-infinite strip (4)
and shows too high values for specimens used in ultrasonic fatigue
testing. Curve 2 is obtained by the FEM technique described above
for an Al-2024 specimen with a length to width ratio of 1o. The
curve is valid for both the static and the dynamic case since the
difference is always less than 2%. Curve 3 is obtained, by the
experimental technique previously discussed, for Cu-specimens

with a length to width ratio of about 6. Allowing for an experimen-
tal error of 5% and considering the different length to width
ratios we get a fairly good agreement between curves 2 and 3.
Curve 4 shows a dynamic FEM solution for a Cu specimen with a
length to width ratio of 4.6 reported in Ref. (6). These results
were obtained with a stress ratio R=0 whereas the experimental
results shown in curve 3 were obtained with R = -1. Also here a
good agreement can be seen.

For the computation of 6xfrom reading of a strain gauge applied

at the edge of the specimen in the plane of the crack, the
correction function Y&<) to account for the finite specimen

width has to be multiplied by a further function § (2a/B, 2¢/B).
These functions are shown as solid lines in Fig.4b. They have to
be employed since the experimental strain measurements at a test
frequency of about 2o kHz give arithmetic mean values of tensile
and compressive amplitudes only. As can be seen from the FEM-
results in Table 1 the strain value in tension is not equal to the
value of the strain in compression. From these strain data it may
be deduced that the measured strains for 2a/B=0.5 are about 9%

too low. For 2a/B ratios below 0.25 there is no such difference
and the dashed line in Fig.u4b shows the assumed correction function.
The differences between the dashed and the solid lines in Fig.ub
may be due to the reasons outlined above and also the fact that
the machined notch is not modelled in the FEM-analysis.

In Table 2 various threshold values AKty determined by the 20 kHz
resonance method are listed.AKyp values are computed with the
correction functions determined in the present investigation and
are compared with the initial computation method cited in (5).

The approximate correction function applied for AK computation

in previous publications (1,5) has been found to overestimate

the effects of the reduced cross-section, resulting in a maximum
deviation of 20% from the values computed by the method described
above.

The evaluation of AK values for 20 kHz-resonance specimens from
measurements of the displacement amplitudes at the ends of the
specimens appears questionable in view of the rather complex
distribution of the strain in the plane of the crack caused
particulary by the differences in excess strain during the tension
and compression half cycles.

In our investigation we have extended the determination of the
correction function Y(2a/B) only up to a value of 2a/B=<0.5. The
reason for this limitation is the excitation of vibrations at
higher harmonics. The amplitude of which may exceed negligible
values if the crack grows to dimensions exceeding approximately
1/2 of the specimen width. In contrast to center cracked
specimens we founs that in edge cracked specimens transverse
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TABLE 2 - Threshold values for different materials
P AKT (MPaVm)
material L/B |B(mm)| 2¢/B [2a(mm)|€= mox__min| g (MPa) Ref.?S) this
2 paper
A1 2024 T3 | 10 | 15 lo,16| 3,62 | 4,3 107 | 72500 1,85 2,72
4,02 | 4,1 1074 1,80 2,2
4,62 | 3,75 1074 1,70 2,1
Cu 6 | 1v lo,15| u,56|2,7 107" 126000 2,10 2,6
(4507C,2h) 5,10 | 2,5 10”7 " 1,95 2,5
5,20 | 2,5 107" 1,96 2,5
cu 6 | 14 lo,15] 3,58 | 2,7 107" h26000 1,98 2,4
(8507C,4h) 4,26 | 2,5 1074 1,90 b
| A

plate-vibrations are excited. These plate vibrations considerably

affect the accuracy of the determined AK values already at

a/B=

0,3 as has been already pointed out by Hoffelner (6).

The authors like to
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SYMBOLS USED

28 e crack length R owviommse Gminﬁsmax

B sswwsie specimen width U, swemms displacement

€ wemwnin compliance Ve s s 5 w1 displacement amplitude

D ...... specimen thickness AU crack opening

E weons . Young's modulus Y(2a/B). correction function

Foooo.o.. force S ... uq-up

€ wsemsw crack extension force € (oemus strain amplitude

K oooonn stress intensity factor €p...... applied stress

AK ... (Kmax—Kmin) R20 2g ...... machined notch size

Knax R40. ¢ ...... correction function
1 ...... active gauge length Y samims Poisson's ratio
L osowsm e specimen length
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Fig.3 Experimental determination of the correction function Y(2a/B)
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for center cracked specimens
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