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ABSTRACT

The closed form expressions of stress intensity factors for Griffith crack(s) opered
by asymmetrical body forces in a rigidly lubricated orthotropic strip have been
obtained by using finite Fourier transform. The determination of plastic-zone
length and the conditions of partial closing of the crack are also given for
asymmetrical forces. A special case of point body force is considered for wood of
Oak.

INTRODUCTION

The modern advance in application of composite materials necessitates the stress
analysis of the structures. The region bounded by ribs, spars, and stringers

in a wing of an aeroplane can be reduced to the problems of infinite strip with
edges rigidly lubricated in plane strain conditions. The problem of two
symmetrically placed Griffith cracks in the isotropic strip with symmetrical body
forces by Parihar and Kushwaha [1]. The stress intensity factor due to a Griffith
crack in an orthotropic infinite medium has been obtained by Kushwaha [ 2].

Only recently Satpathi and Parhi [ 3] have solved the problem of stresses in an
orthotropic strip containing a Griffith crack opened by uniform pressure at crack
faces using potential function method.

The title problem is the extention of [1,2] and the references thereof.

The convention for notations of stress and displacement components and super-script
is followed from [4]. Physically the problem is with rigidly lubricated edges having
stress free crack(s) with the continuity conditions in off-crack region. We assume
that the axes of material symmetry coincide with the axes of co-ordinate. All
physical quantities vanish as |yl ° where y is the axis normal to crack axis.
Mathematically, we are to solve the following boundary value problem with the
boundary and continuity conditions, namely;

Ty (2 a,y) =0, u l+a,y)=0, 0¢ |y] < oo, (1.1)
and
Ty (%,0%) =07 (x,08) = 0, Og|x|cc, (1.2)
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uy(x,0+) = uy(x,O ), ux(x10 ) = ux(x,O )y c& |x|ga, (1+3)

O}y(x:°+) = O}y(x,o-), U‘Xy(x,o“) = G;cy(x,o'), csxl¢a, (1.4)

Jor a Griffith crack occupying the region (y = 0) o <|x|<C. The superscript (&)
gives the value of physical components fromy > 0 and y < 0. 2a is the width of the
strip.

Similarly for two symmetrically placed Griffitherack occupying the region (y=0)
b <|x| < ¢ and edge condition (1.1) and the following,

Yy = £y = 0, belxlee (1.5)
C33yy(3(9cy_) = (y;y’(x,(*-) ) L\ ‘( 2

Gy (X3 0™) = Oy (1,07 Ty (4 0) = Gy (1,07), oglx|gP, cfxiees (146)
ug (x,07) = uy (x,07), u, (x,07) = u (x,07), oglxleb, cslxica. (1.7)

For the above mentioned problems, we divide these into two parts, namely, Body
Force Problem and Elasticity Problem. The solution of body force problems will
be independent of number cracks in the medium. Individual problem is further
sub divided into two namely, symmetrical and anti-symmetical. The symmetry of
the geometry will reduce the domain of solution to the domain [o0,a] x [0,%]

We have used the following definitions of Fourier transform.

(o)

Ss2 [y a co oL
£ S,a n . .
cs (Pn ,—§> = g Jf (x,¥) cos(;gn) x sin Ty dxdy,

A, = n¥/a, Pn = (m - 1/2)%/a , (1.8)

with the usual definition of inversion. The plan of the paper is as follows.
Section 2solves the problem of body force. Section 3 solves the elasticity of a
Griffith crack and section & deals with plastic zone length at the crack tip. The
elasticity problem of two Griffith crack is solved in section 5. Section 6 deals
with partial closing with two models. To illustrate we consider one special case
of point body force in section 7.

2. BODY FORCE PROBLEM

We solve the equations of equilibrium in the presence of body force [X,Y] along
with the boundary conditionms.

(k (k) ;
aiy J(a,y) :O‘;\} =0, kx = 1,2, 0s|y[¢e2s (@s1)
u;(k)(X,O) - w2 ) (x,0) = 0, k = 1,2, oglxl¢a, (2.2)
ui(k)(avy) = ui(k)(ary) =0, k = 1,2, osly|<00, (2.3)

where super script (s.a) refer to symmetrical and anti-symmetrical parts of the
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problem super script (1 & 2) refer to physical quantities for y>0,y<o
corresponding to body force problem.

Symmetrical: We assume that the body force components [ X,Y] are odd and even;

o
co
. k
w8 yy) = 45 sinex [rwy v K, Yos] cosw 43, k = 1.2
gl =1 0] (2.;4)

o0
s(k
wp ) = 20,9 0e I us e y) cossix, k= 1,2 (2u5)
A n= ¥
SOV ot vy o ol Twy v (<195 wy v Tsinsy dx (2.6)
Uye Upi¥/) = ;ZJ [w2 sc 3 'CS] ’ ? o
o]

where w , w,, w, are taken from [ 2] after replacing‘g by o€, It is being done
to save the space.

Anti-symmetrical: As for symmetrical case we shall follow the same analysis
except in this case the components [X,Y] are even and odd functions of x and vy,
respectively. We get the displacement components as

sy Q k41 K
w20 (2,7 ) =”£_n2=1cos(/3nx>oj [wy XS (21w, Yos | cosTHAZS,  (2.7)
oo 00
W) e,y) = a7 3in (£x) {[v, X+ (<1 W ¥ Jsintya, (2.8)
v Fan=1 3

where w, , w,, w, are to be obtained from [2] given by equations (2.6) after
replacing; by Bp.

3. AN INTERIOR GRIFFITH CRACK

We solve the equations of equilibrium, in the absence of body forces. Following
the method of Kushwaha [ 2] and taking the components of displacement for symmetrical

part of the problem as

m 1 . 2 .

Z1 sin® x o [aﬂ H, gry— ol a12HJ], J= 3,4 (3.1)
n=

w$ ), y)

us(j)(st)

oo
-2 b _ 2 J ,
. % Ao +?1 <><n cos c><nx [a”H, b * (a12+ agg )H,A(Boz)

with Hj given as

: ) @) (=1 (=1)7z
(rq=1,) HI(X,y) = [(r1— r,) ArSJ)° Bé‘”]e( 1) Ry, +B_e f2nY
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where r, & r, are two roots of equation given by (2.10) of [2] and a , ~ag, are
constants of the medium. Similarly we solve for anti symmetrical system of body
forces as

=

[e.=]
a5 Y -1 N ) -
‘i;(‘ (x,v) =2 ’30-‘3(/‘2?) /5n [a11 ™ B, 215 f?]) J= 34 (3.4)

n:1
(i) ) S G/ e o 3.5
il T xr — < .V\ by 4 " ° - - + 7 L § 4 e
u,, (x,17) = 21 Pn sin an [a’}j 'yyy /gn(a‘l?'ao6) Yoy (3.5)
- n=1
with 69 given as
. : o (1)r By (—1)jrj3y
_ J _ [ _ (3)_D(J)] ' "nY 5ot 2Fn:
(r1 r?) e ('Bn’y) - (r1 r2) Gn n 9 oy
(3.6)
We can easily evaluate the components of stress for two cases, from the equations
(3.1) - (3.6) and the stress-strain relations. Having satisfied the boundary
conditions and continuity conditions (1.1) - (1.4), the problems are reduced to

system of dual trigonometrical series relations whose solutions are obtained by the
method of Parihar [5].

Then we calculate the components of stress and of displacement in the vicinity of
crack tip (+ c,©0) and use the definition of stress-intensity factor [1],

= o}
kS = 2a_ sin(agc/?) J [cos (nvr/2) ﬂ () /)fG_(y,_Yc ]dy y (37 )
¢ " o sin qc o

rg = (2a7'/asTnac) ;g[sin(c;w 6, (v)/)f60r,0) Jay (3.8)

with G(y,c) = cos qy - cos qC, g,= K/a , (3.9)

700 = o280 + 028,00, 64 0) = 0B (5,004 o—f‘,f)g,lc;)),

c
. (2a” cos (g¢/2 )/ffasingg) J[FQ (v )+(F%‘—--T2) '£~ Fg 4 )]ESin (av/2)/
[e]

JG(y,c )]dy}

o

=
]
1]

: jf . (3 11)
N& = (2a~ singc/q 6,(y) =L ) (3.12)
c V i I
a
— 0.3 xr '2 . n/
G, () = sing§G, (v) + a 1' 31 D-Or; \ g (sin(at/2)/6(y, )03 (818, (3.12)

o) [,=]
6, (4) = "Z—io__iy )(pn,o) _0_%2)@9.0)] cosB t =nZ:1p1 (n) cos (B t)
L9

(z14)
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co
G.),(t) = 21 pﬂ (n) cosﬁn'f+ ui(”(f,O) - ui(z)(t,O) (3.15)
oo
2
Fg(t) = 112___:1 Po(n) sin lant, Po(n) = 0';5(,;)(%90) "Uf:f(,;)(Pnyo)}(z ,6)

=/
P(t) = (agq- aq)[(F - rg)]aﬂ [ Fp(8)+ “;sc(”(‘»t’“‘ ui(2><1"09,

It is not difficult to evaluate the expressions for crack shape. But however, due
to lack of space I am deleting those. The problem of two exterior Griffith cracks
is important from experimental point of view, but, however, mathematically it is
similar to that of one of section 3.

4. PLASTIC ZONE LENGTH

Dugdal [ 5] had proposed an elastic model for plane extension problem of a

straight crack. The same has been extended to Orthotropic medium by Kushwaha [ 2].
The material was assumed to flow after yielding with constant tensile stress, T.
We used Tsai-Wu criterion for yielding. In the present paper we extend the
analysis of [ 6] to asymmetrical loading, causing yielding due to shearing stress
too.

Thus, the boundary value problems to solve is with boundary conditions (1.1) and
the boundary conditions (1.2) and (1.4) replaced by

o;‘,(sc,oi) = o‘xy(x,oi) = 0, oglx)ed, (A1)
O—‘”’_(X,Oi) = = P1, O_J'(y(X,Oi) = = Q‘]; dé[XILC D (4°2)

for interior Griffith crack and

Tyy (% 0F) = 03, (x,0%) = 0, d¢lxiga (4.3)

1l

Opy (00%) = = By 03 (6,0%) = = Qp eelmie (4.4

for exterior Griffith cracks whose results are not reported here. Where P, and
Q) are evaluated from the Tsai-Wu yield criterion for plan-strain conditions and
given as

3 = - y 7 - 4.5)
Fatihe 1 & To + T? -+ l;»T‘ ( I m ) ) (
! 66 16 ' = & -6

3 Feo F o etc. are given in appendix [2], d,a are arbitrary
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constants to be determined. The finitenmess of normal and of shearing stress at
(+ c¢,0) will determine d as well as a. The solution of boundary value problems
given by equations (4.1) - (4.4) can easily be obtained through the analysis of
sections 2 - 4.

Thus using the equations (3.7), (3.8), (3.11), (3.12); we get for the determination
of d which inturn gives plastic zone length as (c-d) for single crack. We get from

- - ;
v +¥g =0, No +N_ = o, (4.7)

d
J Fy (v)eos (av/2)dy

o} a(v,c)

o gy - ] o)

(v)sin(ay/2 )Xy & G ,(y My

"3

i

d a
¥, (v) sin(y/2 dy F
-]
(¢]

JoGre) (
a—1 d cos (ay/2 )4y

. -§) (24— r?)VG(.v.;-)
EQ1 — {A—McéQd/g)]“L ;;_%D/G(d,c) -l/G(o,cQ_(z;.g

a

1— r2) GI(-Y’C)

/.
sin(at/?) G5 (£)dt
Glv,t)

Ot—® H N

il

5. TWO GRIFFITH CRACKS

To solve the problem two symmetrically placed Griffith cracks with boundary condi-
tions (1.1), (1.5) - (1.7) we follow same analysis and section 2-3. The problem
is reduced to triple trigonometrical series relations whose solutions are obtained
by the method of Parihar [5]. Just to save the space we shall report only stress
intensity factors of symmetrical case only.

The solutions of triple series relationms, involving the constants, are given as

-1 c g(xpin(ox) F{(y)dx o2
g.](t) = g—(—ﬁ\[b G(X,t) +L{) = §m41(t) (5.1)
c
-2 Sx) F4(x)dx ' a2
g2(t) = 512‘(t0t [J —ﬁG(X,t 3 L;l: 8’(‘{7 Az(t)y (5-2)
2 c
won {geae = 00 § g(e = FE) T (5.3)
and

s(y) =116 (b,y) G(y,c) 11%
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Using the definitions of stress-intensity factors we get the expressions as

RS, = (-1) Mx ) Dy e), N5 = (1)t Mz ) D, (), 1= 1,2,

=
M = € ptinapa )™ | x <, Ry = {85

where Al (y) and Ay (y) are defined in (5.1) ~(5.2) and F, as F, (y) = Fy (y) + a7l
[sin (q M) /08 -] JRLFSY (t) cos (eyt/2)/(y,t)]dt (5.6)

6. PARTIAL CLOSING OF THE CRACK

Burniston's Model (BM): Asg pointed out by Burniston [7] that the crack faces may
meet other than the crack tips. Parihar and Kushwaha [1] had extended to isotropic
strip with symmetrical body forces. In the Present section we are extending the
analysis of [1,2] to orthotropic strip under asymmetrical system of body forces.

We know from practical experience that when crack faces one separated cannot be
brought to continuum concept of closure. However, we can stop propagation by
providing the structures and such conditions that the crack faces may have tendency
to move closure. The concept of partial closing of Burniston rests upon the idea
that if the displacements uy(x,O) caused by constant pressure, T, is cancelled by
body force then crack would be called partially closed.

Thus the problem under consideration is that the crack 0<|x|<c (y=0) is opened
by constant internal pressure, T, at crack faces and closed by asymmetrical system
of body forces. The problem is characterised by the equations (1.1), (1.6) - (1.7)
while (1.5) is changed to

o;y(x,(ﬁ) =0, o}y(Y,Oi) =-T, b x|ee (6.1)

where b is unknown in this case which will be determined from the finiteness condi-
tion of resultant stress at (b,0) i.e. vanishing of stress-intensity factors
(with vector sum).

Following the analysis of section 5 we can easily solve the boundary value problem.
Thus we get

Arr,r,) (%5 + KS) + Ng +Np = 0 (6.2)

Lf body forces become symmetrical (withrespect to both the axes) Ki = Ni = Ns =0

Kushwaha Model (KM):

As emphasised in previousmodel that after opening, the crack faces may not close
upto the state as before the opening. However, application of stresses may destroy
the elastic nature of meeting surfaces and develop plasticity in the region.
Mathematically, the boundary value problem is as follows. The boundary conditions
(1.1), (1.3) - (1.4) while (1.2) changes to

o—x_V(x,Oi) = s O:_':'(X’Ot) - P1, O<|x) < b ' (6.3)
+ + _ . 6.4)
O—yy(xio—)=‘p ,O-;(y(x9o-) = O, bé\x‘( 5 (

with crack opening with constant pressure, P. at crack faces. P, and Q, are given
by equatiohs (4.5) - (4.6) with unknown. Thus there are two unknowns, namely
b and a, which will be determined through the equations given below.

: P 3
Yo . -1 singv/2, . a5 =1 (sinab/2, _ ..lﬂ/, -V _\)
- P 4 sin (531%375.) + 5y Foos (Singer/s) g We®,e)-/c(0,c)

1
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c
+_§ [cos (ay/2) Fi(y) + sin(ay) Gy (v)] /G(yye) dy = O (6.5)
b

2 =-1NA . =1 cosgb/? Q1

sin(ay/?) Fo(y) + Gy(y)y

+
o'
+
,;[
=
K1
-

sin(at/2) {e;(t) + Py (o)) at

where Fl’ F2, F3; G,, G, and G, are given by equations (3.10), (3.14) - (3.17).
In the next section'we shall consider an example of point body force.

(6.6)

Ot—m
]
o

Thus we clearly see that in the length of closed crack the normal displacement is
zero for B-Model for K-Model it is not so. Secondly, in BM the resultant is
finite at one point i.e. (b, 0) while in KM it is constant throughout the closed
length of the crack.

7. AN EXAMPLE

Since revets or stiffeners can be simulated by point body forces in mathematical
analysis, therefore, the following example is of practical importance.

x =Y =0, X =0, v =7P6(){8-n) -8 +n)}y.)

'*O e &)
which means a constant force of magnitude P is acting at (0, + h) in positive and
negative directions of y, respectively. Since loading is symmetrical with respect
to crack faces, we shall get anti-symmetrical part of the problem to be zero
identically and F2(x) = F,(x) = 0. Thus obtaining the transform of (7.1) and
substitute in equations (2.3) -(6.5) and get use of thestress-strain relations with
first of (3.10) and evaluate the integrals in (3.7), we get

S

. P - - \ .
K = — S— \[ r, (r,) V (r.h) - r, (r,) V (rgh} [7,2)
c /_ﬁ?l'a cot (0a/2) 2 1 o' 1 5 = 0 .

=t -
v, (y) = eosh(ayv/2 }/VR(}I,C,}, rz(y/ = 5.”{:310+ 2ge
2 ) )

The values of ( ZV‘?C/P}TT’ for different values of h/c and of c/a obtained from
equation (7.2) of wood of oak are given below.
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TABLE - 1

Grains varallel Grains rarallel
h/c to x-ayis - . _to v-axis _
c/2 = 0.9 c/a = 0.5 c/a = 0.9 c/a 6 0.5

0.0 4,512 1.772 4,522 1.782
0.5 4.504 1.75% 4,512 1.769
1.00 4,480 1.572 4,509 1.766
2.00 4.467 1.377 4.484 1.617%
4,00 1,166 1.758 4168 1.365

Partial Closing: (BM)

The solution of equation (6.2) with F,(x) = 0 and Fi(x) is obtained as in preceed-
ing lines with the change of P by Q. The graph is plotted for (Q/cT) against b/c
for different value of h/c and c/a in Figure 1. Though expression are lengthy
ones, yet they are closed form.
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