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ABSTRACT

An analytical solution has been derived to compute the variation of total cyclic
potential energy with crack length considering the elastic-plastic load cycling of
cracked plates in tension. This solution is based on the energy interpretation of
the J integral applied to fatigue crack growth in the elastic-plastic range and
has been previously applied to the contoured DCB geometry. The solution is
applicable to these geometries providing fully tensile loading and cyclic creep
occurs. Crack growth rate da/dN is a function of the cyclig value of the J
integral in the loading cycle AJ, in the form da/dN = C AJ"” where C and B are two
constants taken for mild steel BS15 at a loading frequency of 0.15Hz.

Considering the above crack propagation law for mild steel BS15 AJ was obtained
for diferent stress values as a function of crack length for load cycling in a
single edge notched plate in tension. Also the predicted crack length against
numher of cycles plots were obtained.

Experimental crack propagation data is necessary to check the validity of this
approach before it can be considered a valid parameter to describe elastic-plastic
fatigue crack propagation in load cycling. This data should be obtained in a wide
range of specimen geometries including cracked plates in tension.
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INTRODUCTION

Linear elastic fracture mechanics (l.e.f.m.) has been successfully used to analyse
the fatigue crack growth behaviour of high-strength materials where the extent of
plasticity is confined to a small plastic zone at the crack tip. Consequently in
the presence of a crack in a high-strength material failure will occur at
nominally elastic stress levels. A considerable amount of research work has been
carried out into the theoretical and experimental application of linear elastic
fracture mechanics to fatigue crack propagation. Also a considerable number of
crack growth "laws" has been developed to relate the fatigue crack growth rate,
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da/dN, to the range, AK of the stress intensity factor. Branco, Radon and Culver
(1975, 1976) derived a crack growth law shown to correlate quite well with data
obtained in aluminium alloys, mild steel BS15 and other low alloy steels.

When low and intermediate-strength alloys such as mild or other low alloy steels
are considered fatigue crack growth may occur with relatively, large plastic
deformations. Branco, Radon and Culver (1975, 1976) obtained crack propagation
data at stress levels below the yield point. If large plastic deformations are
developed during fatigue crack growth, l.e.f.m. can no longer characterize the
local stress distribution at the crack tip. Rice (1968 a) has proposed the J
contour integral to express the fracture toughness of these highly ductile
materials. Mec Clintock (1968) has shown that for strain hardening materials
following a Ramberg-Osgood relationship between effective stress ¢ and effective
plastic strain %

n
o = Sep (D

where S 1is a constant and n the strain hardening exponent (0 <n<1), the
stress and strain singularities at the crack tip may be expressed as a function of
J. The equations presented in his work provide a physical interpretation of the J
integral as representing the amplitude of stress and strain singularities under
elastic-plastic conditions assuming a deformation theory of plasticity with strain
hardening governed by equation (1). An important characteristic of the J integral
is its path independence (Rice, 1968 a). Rice (1968 b) has shown that performing
the integration along the contour coincident with the boundary of the body
containing a crack of length a, the J integral, in terms of the potential energy
difference, dU, between two identically loaded bodies having crack sizes differing
infinitesimaly by da, is given by

g=-242 (2)

where B 1is the specimen thickness.

Fatigue crack propagation in the plastic range has only recently been studied with
some detail. Early work in this field using the J integral energy approach was
carried out by Dowling (1976) and also Dowling and Begley (1976). In this work
data were obtained on A533 B steel using centre cracked and compact tension
specimens, and agreement was found in the results for both geometries when plotted
as crack rate, da/dN, against AJ, the cyclic value of J.Cyclic J wvalues were
obtained in each cycle considering only the loading part and using the Rice, Paris
and Merkle (1973) aproximate equation

2A

AT = =— (3)
Bb

where A 1is the area comprised by the loading curve of the load-deflection loop
and the horizontal line passing through the assumed crack closure line, and b is
the uncracked ligament length. However the method applies only to those two
particular geometries and also cyclic J was not related to the material
properties like the strain hardening and cyclic creep behaviour observed in
elastic-plastic load cycling. In strain cycling Mowbray (1976) and also Kaisand
and Mowbray (1979) related AJ with low cycle fatigue and fatigue crack growth
rate properties. The derived relationship has the form of the well known
Coffin-Manson equation, but the controlling variable for AJ is the applied strain
energy density rather than plastic strain range. The fracture mechanics model
derived by Mowbray (1976) was applied to the smooth bar low-cycle fatigue specimen
with a semi-circular surface crack and da/dN was correlated with AJ using data
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obtained by Dowling (1976) for the A533-B steel.

In load cycling Branco, Radon and Culver (1977 a,b) correlated the fatigue crack
growth rate with a cyclic operational value of J, AJ, obtained applying non
linear beam theory with large deflections to the computation of the total cyclic
potential energy in the contoured DCB geometry subjected to fully tensile loading
above the yield point. This model takes into acconnt both strain hardening and
cyclic creep behaviour occuring in load cycling above the yield stress. Correlation
of data was obtained for mild steel BS15 in the form da/dN = CAJP were C and B8
are experimental constants obtained at a loading frequency of 0.15Hz.

The present paper describes the development of the authors theoretical method for
computing cyclic J values in load-cycling of cracked plates in tension. An
application of this model is made for a single edge notched plate, using the data
already obtained for the mild steel BS15.

THEORETICAL ANALYSIS

The load-displacement curves obtained in load-cycling for a specimen having an
initial crack of length a, are illustrated in Fig.la for a linear elastic
material and Fig.lb for cycling above the yield point. In both cases the crack
has grown from ao to a after N loading cycles. The area illustrated represents
the decrease, AU, in total potential energy, after N cycles. For the linear
elastic case a cyclic value AG of the monotonic crack extension force can be
defined as

d (AU) _ AP d (A%)
da 2B da

ac=-1 (@)
B

where AP is the loading range and A8 is the corresponding range of extension
for the assumed specimen gage length. For the elastic-plastic load cycling
(Fig.1b) an operational value of AJ is given by an equation similar to equation
(4) with the value of AU represented by the shaded area shown in Fig. 1b

Load

F E
Extension

a Linear elastic material. b Elastic-plastic material.

Extension

Fig. 1 Operational definitions of cyclic AG and AJ after N 1loading cycles.
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However in elastic-plastic load cycling cyclic creep occurs and the corresponding
cyclic creep extension accumulated after N loading cycles is represented by OE
in Fig.1lb. It should be pointed out that if crack growth had not occured the trace
EC would have been parallel to BF. The elastic loading condition for EC is
closely true since the yielding has been largely accomplished between points A
and B,

The value of AU 1is obtained by the equation

AU = AUN - AU1 (5)

where AU_. 1is the total accumulated potential energy after N cycles with a
crack length a (= OECBHGO) and AU; is the potential energy of the first cycle
with a crack length a, (5 OABHGO). It can be seen that AUy includes the cyclic
creep component since crack growth will depend on the accumulation of strain
caused by this phenomenon. The value of AU; is independent of the crack length
a and therefore d(AU)/da = d(AUN)/da. Hence AJ becomes

1 d AP

AT = - E a (AGN AP - T AGel) (6)

where Ady 1is the total extension for the specimen gage length (ZHC) and ASgq
represents the unloading extension (SED). The displacement A8y includes three
factors

B8y = B8y + BASee + A8g) (7

where AS; 1is the maximum extension in the first cycle (SHB), AS.. is the
cyclic creep extension accumulated after N 1loading cycles (ZOE) and AS,q  is
also the extension caused by crack growth (=BC -FE), Thus equation (6) becomes

I 1 [7d (A8;+A8cc)AP, AP d(ASe]) (8)
B L_ da 2 da

In an early work (Branco, Radon and Culver, 1977 b), fatigue crack growth rate
da/dN correlated well with AJ calculated with a similar process for contoured
DCB specimens of mild steel BS15. The fatigue crack growth data is shown in
Fig.2 fitting a power law equation

da _ B
a c (a0 €D

with C = 6.546 x 10 ° and B = 1.092., These values were obtained applying a
linear regression program to the experimental data points. The results presented
in Fig. 2 indicate that the elastic-plastic data follows an extrapolation of the
region II linear elastic data. In this region AJ 1is given by equation (4) equal
to K2/E from the crack propagation law derived by Branco, Radon and Culver (1976).
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Fig. 2. Crack growth rate vs. AJ (or K?/E). BS15. R = 0;0.15Hz

Calculation of AJ for Load Cycling of Cracked Plates in Tension (R=0)
For these specimens the value of A&y from equation (7) becomes

ASy = 14 (Eys +ep * €ce) + ASgp (10)
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where €ys the total elastic strain, ep; the plastic strain, eq. the cyclic
creep strain and lo the specimen gage length. The assumed stress- strain curve is
an elastic-plastic one with exponential hardening. Therefore the first two terms
in equation (9) are given by the equations

€ys = IS (11 a)
E

- n - n
ep1 = A9 T ax Oys) A (Ao)

(11 b)
where o, 1is the yield stress, E the Young's modulus. A and n the strain
hardening constant and exponent. The cyclic creep strain was also assumed to
follow an exponential law

€ee = Cp (A)™ N (12)
where Cy is the cyclic creep constant and m the exponent. Equation (12) gives
the accumulated cyclic creep strain as a function of the number of cycles and
applied stress and was initially proposed by Benham and Ford (1962) to correlate
load-cycling data obtained on plain steel spec1mens. Also a good correlation was
obtained with equation (12) for data obtained in plain cylindrical spec1mens of
mild steel BS15 (Branco, Radon and Culver, 1977 b). The second term in Equation
(8) may be expressed as a function of the stress intensity factor, K

AP d(B8e1) _ K2 _ Y20%nax T8 (13)
2B da E E

where Opay 1s the maximum nominal stress and Y 1is the dimensionless factor.
Upon substitution of equations 1la, 11b, (12) and (13) in equation (8), AJ
becomes

g 2.2
NN w-L T¥s 4 Anc® + €y AgTN)+ L ImaxTa (14)
°o max " 4z E 1 E

Integrating comes

af ag
Y202maxTra m
AJda - —— da = €4 0y WCyAo N (15)
o 0o

where W 1is the width for a plain specimen having a crack with an initial length
0 growing to a final length af in Nf cycles. For a single edge notched plate
with O <a/w <0.7 the value of Y is given by

2 3 L
¥ =1.12-0.23 (2)+10.6 &) -21.7 &) +30.4 &) (16)
w w w w

Therefore in this analysis af was considered to be equal to 0.7 w. From equation
(9) the value of Nf becomes af
Ne =k [ 82, an
f C AJB
6
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)

Substituting this equation in equation (15) comes

£ WCyAg™ ki i Y2452
AJda = £y opayx TCLES da_, 1 OmgxTa. (18)
6! AJB E
o o o
L, 0., WC. ACT 2.2
- AJ = o max ) . Y omaxTa (19)
caJB E

with the value of Y given by equation (16). Equation (19) was solved by an
iterative process in a computer program with an accuracy of 10-2 for two
consecutive values of AJ. The data used was obtained for mild steel BS15 and the
corresponding values are indicated in Table 1. The program was run for six
maximum nominal stress values of 550; 525; 500; 475; 450 and 425 MPa.

TABLE 1 Data used in Equations (19) and (11b)-BS15 Steel

£y =150 mm C=6.546%10""
W= 25mn g=1.092
€1=2.0x10" 0mm2/N E=2.07x105MPa
m =3.06 18 n=7.6

A =1.9337 x10 ~mm O§E4OIMP3

RESULTS AND DISCUSSION

Figures 3 and 4 show the plots AJ against crack length for all the stress
values. It is seen that AJ increases with the crack length and with the applied
constant nominal stress in the specimen. The slopes of these curves are reasonably
constant in the early stages of crack growth showing however a steep increase for
crack lengths greater than 10 mm. The obtained J values are greater than 220
N/mm thus corresponding to the elastic-plastic range of the fatigue crack
propagation curve for BS15 presented in Fig. 2. For the DCB specimen it was found
that J decreases with increasing crack length (Branco, Radon and Culver 1977a).
This result was also verified by the experimental results obtained for BS15.

In the side notched plate specimen subjected to temsion the cyclic creep extension
rate is constant with the applied load and the variation of compliance with crack
length (3C/da) 1increases with the crack length. Therefore d (AJ)/da is an
increasing function (Figs. 3 and 4). In the DCB specimen 3C/da is constant with
the crack length and the cyclic creep extension rate decreases with increasing
crack length due to the decrease in bending stress with the crack length.
Therefore these two types of specimen geometries show different behaviour which

is however consistent with the theoretical calculations made.
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Solution of equations (17) and (19) produced the plots crack length against number

of cycles presented in Figs.
corresponding AJ

5 and 6. The results show a similar trend as for the
against crack length curves. With such high stress values

(greater than the yield stress) crack growth rate is also very high and it is seen

(Fig. 5) that the computed maximum numb

er of cycles for the lowest stress value of

425 MPa is only 511 cycles to grow a crack from O to 0.7 W. An experimental
testing programme is now being initiated to obtain crack growth data in these

specimens.
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The computed load extension curves for the stress of 500 MPa are traced in Fig. 7.
The cyclic creep extension is measured in the horizontal axis and the loading
lines show an increase of slope caused by the increase of compliance due to crack
growth. The curves shown in Fig. 7 can then be compared with the experimental
load-extension curves. The AJ values can also be obtained from the experimental
load-extension curves measuring the cyclic potencial energy AU (Fig. 1) and
obtain its derivative in order to a.

Equation (19) was derived for nonimal stress values in agreement with the strain
hardening and cyclic creep equations. Since plastic deformation is very large it
would be probably more appropriate to use the true stress. Work is now in progress
to solve this equation using the true stress, and obtaining its values from a
constancy of volume relationship which may be obtained in the next load-cycling
tests. Thus it is important first to assess which of the variables, thickness or
width, will be reduced in the load cycling tests before one can stablish the
relationship to be substituted in equation (19).
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Fig. 7 Computed load-extension curves. W = 25 mm.
R = 0. Ompax = 500 MPa. BS15

CONCLUSIONS

Based on the energy interpretation of the J contour integral, the variation of
cyclic total potential energy with crack length was considered to define AJ, the
cyclic value of J. An analytical method has been described to compute AJ values
in plate specimens when cyclic creep occurs in tensile load cycling at stress
levels above the yield point. It was found that AJ is given by an equation
function among other variables of material properties like Young's modulus, and
the strain hardening and cyclic creep parameters.

An application of this method was carried out for a single edge notched plate
assuming a crack propagation law da/dN = C (03)B previonsly obtained by one of the
authors in a similar elastic-plastic study of fatigue crack propagation in
contoured DCB specimens of mild steel BS15, where AJ was defined by the same
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process refered to here.

In a single edge notched plate of mild steel BS15 AJ was obtained as a function
of crack length for different stress values. A computation was made for the
corresponding crack length against number of cycles curves and also the
theoretical load-extension curves were obtained as a function of crack length.

Experimental data for other materials and in these specimen geometries is necessary
to confirm the validity of this method to correlate fatigue crack growth rate in
elastic-plastic load cycling.
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