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ABSTRACT

I'ne principles of elastic-plastic fracture mechanics are shortly
summarized and the special requirements for computational tools
are derived, Possibilities to model the crack tip singularities
are mentioned. The relevant fracture parameters like J-Integral
and COD and their correlation are evaluated from 2D and 3D elastic
plastic finite element calculations of standard fracture tough-
ness specimens., The size and form of the plastic zone are shown.
The comparison between experiment and calculaticon is discussed

as well as the application of the limit load analysis.
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NUMERICAL METHCDS

All fracture mechanics variables and fracture parameters are
derived from deformaticns, stresses or strains cor from combi-
nations of these wvariables in the vicinity of the crack. This
means that a detailed stress analysis of the flawed structure
allowing for the correct material law must always be available
in principle for the examination of a specific problem. In
addition, assumpticns on fracture mechanisms are based on
details with regard toc the stress and strain condition close

to the crack tip which cannot always be obtained with adeguate
certainty by purely analytical means. Such problems can only

be solved analytically in very few special cases and even then
for the most part only in the purely elastic range, with usable
corrections being possible for small plastifications. In gen-
eral, the soluticns te these special cases cannot simply be
transferred to real problems, but they can, however, be used to
estimate the anticipated result. Otherwise one is dependent on
numerical methods for the scolution of such problems. Basically,
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those methods which are otherwise applied for the determination

of deformations, stresses and strains in bodies of any shape

and with any kind of load may be used in this case. Non-linear

material laws may be treated but only with considerably greater

difficulties and as a rule with much greater effort. Due to the

presence of a crack in the structure examined, the numerical

methods must be able to cover the following with adequate ac-

curacy in addition to the requirements already known:

- singularities of stress and strain

- crack tip blunting and

- large strains in the region of the crack tip.

The finite element method has proven to be suitable for the

solution of fracture mechanics problems amongst the common

numerical methods (Zienkiewicz, 1977).

It was shown by Henshell (1975) and Barsoum (1977) that strain

singularities for isoparametric elements may be introduced solely

by the selection of the physical co-ordinates of the nodal points

of an element:
€im = Vr"'l+cij+"' '

if the degrees of freedom of the collapsed crack tip values are

independent, otherwise:

ij '
€ 5r) = = ¢t Chyt .

Apart from entirely academic examples, the fracture mechanics
problems actually arising are always three-dimensional. Even

in cases in which it is possible to describe geometry and load

in a plane co-ordinate system, assumptions with regard to strains
or stresses in the third co-ordinate direction are necessary for
a correct determination of the stress and deformation conditions.
Such specifications are at first arbitrary. On the whole one
considers the condition of plane stress and plane strain as
boundary cases. Whilst in a real problem plane stress may occur
in thin structures since the normal stresses disappear on free
surfaces, the plane strain condition is only to be assumed as a
boundary case. Consequently, in a two-dimensional calculation

the result is greatly dependent on whether plane stress or plane
strain is assumed. In the analysis of a specimen the difference
is, for example, 30 o, in the load deflection curve. Faults of
this kind are thus quite unavoidable due to the limitation
ntwo-dimensional calculation” and cannot be compensated even
with extra effort regarding element and nodal numbers.

EVALUATION OF FRACTURE PARAMETERS

Determination of Crack Tip Opening Displacement 6 (COD)

As will be shown in detail in the results, the crack tip opening
displacement may be determined easily by extrapolation of the
crack tip displacements towards the crack front. The accuracy

of this method is good (at least in the case of extensive
plastic deformation), since here on the one hand the displace-
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ments of the crack behave approximately linearly in the vicin-
ity of the crack tip, and on the other hand, the displacements
are determined with the utmost accuracy as the primary unknown
quantities in the finite element method.

Determination of the J-Integral (plane strain condition)

The varizbles W (E£) = Ofai.j dEij
and t = {ti}: {Oijnj}' {U]
defining the J integral
[ =80,
o= [ gy 2% LY e (1)
r

are immediately accessible by the finite element calculation,
Thus J can easily be calculated by way of appropriate program
extensions. A further possibility favoured by the authors results
from the definition of J as represented by the change of poten-
tial energy

[ e

Jd = = =7

o

k=

with the change & A in the crack surface.
In the formulation of the finite elements we obtain the following:

v=2-{u S - fub - b T (H)
Following Parks (1974) we get

_g_g - _—ﬂifl—T-([K]-{u} - fF} ) -2} T

L = const 6~
{x] \ F
s 1 (o). o S5 (2)
and considering that, according to definition,
K- fu) - {F) =0
and s{e} 7 8a = 0

we obtain

J= -2 {u 1. —5—6[% - {u} (3)

J is actually not defined for three-dimensional cases. According
to Parks (1974), it is possible to define a variation of J' = G =
-5U/ 6 A along the crack front at least for the elastic case by
way of the definition of J from the change in potential energy.
It will be shown in the results that this method leads to rea-
sonable results also in the elastoplastic range. However, it

is not possible to demonstrate the validity of the method.
Park's method above all offers great advantages with regard to
the calculation time since only a few elements must be reas-
sembled in general in_the vicinity of the crack tip in the
determination of 5[K].



24 E. Keim and W. Schmitt

RESULTS

The FE-analyses were performed by three different types of fracture

toughness specimens:

- the compact tension specimen (CT)

- the three point bend specimen (3PB)

- the wedge opening load specimen (WOL)

Geometries and Finite Element (FE) meshes are shown in Fig. 1.

CT-specimen WOL - specimen 3PB-specimen

11T

{
A

Fig.1. Geometries and FEmeshes twodimensional of the performed
specimens

Compact Tension Specimen

The FE-analyses were done two-dimensionally (2D) and three-dimen-
sionally (3D).

Load displacement curve, Comparing the results of the analysis
under plane strain condition leads to an underestimation of the
displacements while under plane stress condition the experimental
results were overestimated, respectively. Good agreement 1is shown
between the 3D results and experiment.

Plastic zone. We tried to obtain information about the state of
stress of the specimen from the plastic zones. Theoretically we
consider for small plastic zone sizes

r . (em-R2  )/K.2 = cos?les2)-i+3-sin? (8/2)-4v'. (1-v")] (4)
p Po,2 I
where
' :{V Poisson's ratio (plane strain)
0 (plane stress)
Pp and 8 = polar co-ordinates of the plastic zone boundary

yield stress.
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Fig.2. Normalised plastic zones at fracture load

At low loads the form and size of the plastic zone is less differ-
ent between the specimen surface and middle, In the middle the
plastic zone approximates the theoretical form under plane strain
conditions, Figure 2 shows the theoretical plastic zone form under
plane strain and plane stress conditions as well as the plastic
zones at experimental fracture load. Comparing with low loads

the plastic zone at the limit load is larger in the middle of the
specimen than at the surface. With increasing load the form ap-
proximates more and more the theoretical form under plane stress

conditions.
J-Integral and crack-tip opening displacement § (COD), Figure 3

shows the linear relation between R y J and 6 following Rice
(1970). Pp,2
J & . R 0 (5)
i Pz
From the FE-analysis we obtain for f3
(surface)

Tl
1.64 (middle).

o
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Fig.3. Correlation between J-Integral and COD (middle)

Three Point Bend Specimen (3PB)

The analysis was done 2D under plane strain conditions.

Load displacement curve. The assumed plane strain condition leads
To results which are too stiff with respect to the experimental
data. In spite of this the following diagrams are drawn over the
clip-gauge displacement (Vé instead of load.

Plastic zone. Good agreemeRt exists between experiment and calcu-
Tation for the form of the plastic zone (experimental with stress
optical methods). With increasing load the appearing plastic zone
at the load point opposite to the crack grows faster than that
coming from the crack and it shows at least the same size. There-
fore the fracture parameters ( J, &6 ) are probably influenced by
this effect and do not describe the real behaviour of the crack
(see Fig. 4).

J -Integral and § . The J -Integral after Sumpter (1973) is most
Suitable fror comparison of the results from calculation and ex-
periment. The elastic and plastic factors are shown in Table 1.
Good agreement exists for § between calculation and experiment.
From the FE-analysis we obtained §by an extrapolation scheme to
compare with the measured § after Wells (1971) .

J and 6 are correlated by
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FE - analysis experiment

F— 1
crack tip

Contours of the v. Mises equivalent stress stress optical method
Fig. 4. 3-point bend specimen - contours of the plastic zones
(qualitative for two different load levels )

Wedge Opening Load Specimen (WOL)

For comparison of the CT-specimen and the WOL specimen 3D elastic
analyses were performed.

A detailed description of the results 1s not possible here, only
1imit load estimaticn is given in Fig. 7 and 7N _-values are re-
ferenced in Table 1. ©

Comparison of the Factors for J-Integral evaluated
after Sumpter (1973)

Sumpter's method is well applicable for experiments and calcula-
tions. He proposed to break up the total energy of the load ver-

sus load point displacement curve into an elastic and a plastic
part:

u np ° §)

_ Ne * e &
B(W-a)

P
s * BIW-a7 (6)

J

where n and 7 _ are obtained from the results of the analysis

and 7 _ is derived from the load versus load point displacement
curve of the experiment, respectively.
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TABLE 1 Elastic and Plastic Factors Me and nAP
Specimen a/Ww ne Mo
CT 2D° 0.48 2.34 0.8
CT 2D° 0.45 2.36 0.6
CT 3De 0.48 2:32 1.7
CT 3D¥* 0.48 2.33

CT 3D* 0.53 2,28

3PB 2D 037 1.71 1.2
WOL 3D¥* 0.41 2.52

WOL 3D¥* 0.47 2.17

CT Ex** 0.48 2.34

3PB Ex* 0.37 1.68

¢ Specimen thickness 70 mm
# Specimen thickness 100 mm
* Experimental data

For the different specimens we obtained that 7 depends on the
relative crack size a/W. An independency is fourd for the same
specimen and different thicknesses.

Evaluation of Limit Load

The plastic limit load is defined as the load at which the ex-
ternal work increment performed by a virtual displacement in-
crement §, of this force equals or exceeds the internal work
increment consumed.

éwext 6 wint

(7)

The slip lines must be considered with the utmost accuracy in the
determination of the internal work. To reach the limit load at
least one load-bearing cross-section of the structure must be
completely plastified. Limit load estimations for the various
geometries and load types are given in the literature. It is
important to point out that our estimations of the limit load

do not depend on whether the specimen has a notch with a finite
notch radius or a fatigue crack. From this it can be concluded
that failure of the specimen in the vicinity of the plastic

1imit load is not influenced by stress or strain singularities

in the vicinity of fatique crack. Thus it seems impossible to
gain any reasonable fracture parameters (6 cr Joo etc.) from

such specimens.

CT-Specimen. The following equation was derived based on the slip
lines of the specimen:

2

P (1-a/w) / (1+a/w) . W . B

L

"
o
(o))

.
j=¢]

-
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Bend specimen. From the contours of the plastic zones we get
2

PL = 0.15 . Rpo,z . (W-a)
WOL-specimen. For WOL-specimen with a relatively small ratic of
a/W we obtain the plastic collapse of the leg before the failure
of the ligament by reaching the limit load. From the contours of
the plastic zeones and from the slip line theory, respectively,
we determine

2 2

P. = 0.66*R +(1-a/W)~ / (1+a/W) . B (ligament)
= Po,2
P, = 1/(4-V3-sin®a) . R . B®  (leg)
Pg,2
)
_
B-W-R
pn,z —~———— (CT- specimen /WOL - spec. (ligament )
\ 3 point bend - specimen
e WOL - specimen (leg)
\
0 T T T T 1
0.3 0.4 0.5 0.6 07 al/W

Fig.5 Evaluated limit load versus a/W
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