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Abstract

So far the analysis of cracks propagating along a non-straight
path has been almost exclusively restricted to the onset of
crack propagation under mixed mode loading conditions and to
incipient crack branching. :

In the present paper the main interest is focussed on the pro-
pagation phase. Different directional criteria are investi-
gated from a theoretical point of view. As an illustration

a configuration loaded so that a curved crack path is obtained
is analyzed numerically using finite element methods.

Directional criteria are of two principally different types.
One group consists of criteria in which the field around the’
original, the unbranched crack provides the information used.
Such criteria are thus projective in nature. It is to be
expected that, for the continuously extending crack, these
criteria would at most apply to the initiation. For cases
where a flaw is opened up outside of the main crack, a pro-
jective criterion might be strictly valid as long as the flaw
does not significantly change the field around the main crack
tip.

In a real propagation situation the field at the crack tip is
constantly modified as the crack advances. 1In a criterion
called a propagation criterion, the actual field around the
extreme of a crack with a kinked tip should be used as input
information.

In the paper the relative merits and shortcomings of five
criteria are investigated. The whole analysis is limited to
two-dimensional, isotropic and linearly elastic configurations
and, unless otherwise indicated, plane strain conditions are
assumed to prevail.

While currently used criteria for onset of crack propagation
in a mixed mode loading situation give different predictions

+ Senior Staff Scientist

1 staff scientist


User
Rettangolo


- 66 -

for the angle of incipient branching, the present paper
demonstrates that the trajectory of a curved crack to a large
extent is independent of the choice among these criterié.

The theoretical results have been verified by an analysis

of the propagation phase through an incremental description
using finite element calculations. A scheme using a path
independent contour integral scheme permitting a separation
of the stress intensity factors has proven a powerful tool
for the analysis.
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INTRODUCTION

In the past the main interest in the analysis of
crack propagation along non-straight paths has been linked
primarily with the onset under mixed mode conditions and
with incipient crack branching {1-4]. Attempts to settle
questions raised by conflicting theories, have resulted in
a large number of papers [5-12].

Hussain et al [13] have calculated the stress field
around the end of a crack with a kinked tip. By letting the
length of the kink go to zero it was found that the stress
field even in the limit does not coincide with the one for
the unkinked crack. It is clear that, in a situation where
the crack growth takes place as a continuous extension of a
pre-existing crack, this result ﬁoes invalidate results
pased on assumptions of stress field continuity, cf. Nuismer
[14].

The consequences, however,are more far reaching. It
means that not even the direction of incipient branching can
be deduced by continuum-mechanical calculations using the
field around the unbranched, the unkinked crack. In other
words, a directional criterion has to be formulated, which
means that an additional and independent assumption has to
be brought into the picture, either separately or as an ele-
ment of a generalized fracture criterion. Even in the latter
case though, it is convenient to consider the directional
criterion and the proper fracture criterion as separately

imposed non-continuum-mechanical conditions.
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Naturally a good directional criterion should reflect
the physical processes that govern the material separation in
the process region close to the crack tip. This also means
that the directional criterion for onset of crack propagation
and the one for the subsequent growth do not necessarily have
to be the same, particularly so if the material separation
processes are different in the two situations.

In the present paper the main interest is focussed on
the propagation phase. pifferent directional criteria are
investigated from a theoretical point of view. As an illu-
stration a configuration loaded so that a curved crack path
is obtained is analyzed numerically through an incremental

description using finite element methods.

DIRECTIONAL CRITERIA

Directional criteria are of two principally differ-
ent types. Some criteria are projective in nature, in the
sense that the field around the original, the unbranched
crack provides the jnformation used. In view of what was
pointed out in the introduction, it is to be expectqd that,
for the continuously extending crack, these criteria would
at most apply to the initiation. For cases where a flaw is
opened up outside of the main crack, a projective criterion
might be valid, at least approximatively, as long as the flaw
does not significantly change the field around the main crack

tip.
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In a real propagation situation the field at the
crack tip is constantly modified as the crack advances. In
criteria called propagation criteria the actual field around
the extreme of a crack with a kinked tip has to be used as
input information.

In the subsequent sections the relative merits and

shortcomings of five commonly used criteria listed below are

investigated.

PROJECTIVE CRITERIA

A: Propagation perpendicularly to the direction of the

maximum principal stress [1]

B: Propagation in the direction of minimum strain energy

density [2]

C: Propagation in the direction of maximum strain energy

release rate [3]

PROPAGATION CRITERIA

D: Propagation in pure opening mode, mode I [4]

E: Propagation so that the local stress field is symmetric

with respect to the branch plane [15]
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The whole analysis is limited to two-dimensional,
isotropic and linearly elastic configurations, and, unless

otherwise indicated, plane strain conditions are assumed to

prevail.

A: PRINCIPAL STRESS CRITERION

For a general in plane loading situation the near-tip
stress field will be determined by the stress intensity fac-

‘tors K and K for the opening and sliding mode respec-

I 11’
tively. 1In fact

T = Eos 872 [x sin 8 + K (3 cos 6—1)] (1)
= 2/2nr

with respect to a polar coordinate system r, 8 with its

origin at the crack tip and 0 = m corresponding to the

crack faces. The angle 80 for which T o = 0 will deter-

mine the orientation of the principal axis and it will thus

be given from the relation
. _ - 2
K sin eo + KII(B cos 60 1) 0 (2)
as has been indicated in [11].
Denoting the ratio KII/KI by A, the solution of

(2) is simplified to

g% =~ =2) (3)
[¢]
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for small A.

B: STRAIN ENERGY DENSITY CRITERION

In numerous publications Sih has advocated the idea
that the local strain energy density, S, at a certain distance
r, from the crack tip should be the governing quantity for
the fracture process, cf. [2,11,12]. More specifically, a
flaw would form in a direction 60 for which the strain
energy density has a minimum, once it has reached a certain
critical value, and this flaw would then join the main crack.

Under  general in plane loading conditions, S takes

the following form

= 2 2
S axxKI + 2a); KIKII + ayp KII (4)
where the coefficients a,. are given in [2].

1]
The angle 60 is given from the relation 398/36 = 0

which can be reduced to

cos 290[(1-3A2)tan 290+4A] - (n-1)cos 90[(1-A2)tan eo+2A] =0

where again A is used to denote the ratio KII/KI' In order

to verify that the solution to (5) does correspond to a mini-

(5)

mum, one has to check that the additional condition 325/036% > 0

is fulfilled.
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Generally speaking and in contrast to other theories
eo will depend on Poisson's ratio v through u which is
3-4v under plane strain and (3-v)/(l+v) under plane stress
conditions. However, the conditions for the two expressions

within brackets to go to zero are

41
tan 260 = -
1-3A2
and (6)
2\
taneo=-——
1-12

It is clear that these will be fulfilled simultaneously when

A is small, giving

independently of v, for v > 0.

C: STRAIN ENERGY RELEASE RATE CRITERION

The strain energy release rate for a virtual displace-
ment of the crack tip in the g-direction can be expressed in
terms of a generalized J-integral quantity, which, cf. [31,
can be written

- wrl oo g2ag? 0 - 2K_K__sin 81 (8)
3, = G5 U(Kp+Kp)cos %11
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where the meaning of u is the same as for criterion B
and where u is the shear modulus. This criterion says that
the crack will grow in such a direction 60 for which Je

has a maximum. The solution of the equation 3J/36 =0 is

tan 6 = - 2 (9)

1+A2

which for small values of A = KII/KI reduces to

0% > = 22 (10)

D: PURE MODE CRITERION

Several authors, among those Kalthoff [4] and Bilby
[16] have proposed the condition of pure mode propagation
KII =0, J, = 0 as a directional criterion. The main physi-
cal argument in favour of this idea is that material separa-
tion in the process region should take place in pure opening

mode.

E: LOCAL SYMMETRY CRITERION

pirletun {15] has stressed the numerical difficulties
in calculating J, by means of a path independent integral
and pointed out that instead of actually calculating KII or
J, and determining the direction for which these quantities

are zero, one might equally well study the conditions for
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local stress field symmetry with respect to the crack increment
plane. Local stress field symmetry is at hand when the stress
field component parallel to the crack increment o is the
same in two points, situated symmetrically with respect to the
branch plane, and located sufficiently close to the crack tip

to make the singularity terms dominant in the stress field.

COMPUTATIONAL ASPECTS

Except maybe for very special cases, an analytical so-
ljution of the curved crack problem seems to lie far beyond
what can be hoped to be obtained. A logical alternative is
thus to use an incremental description of the crack growth,
studied by means of finite element methods. Recently Stern
et al [17] have proposed a method using a path independent
contour integral scheme by which a separation of the stress
intensity factors K; and K;; can be obtained. In fact,
as shown in Appendix I, closed form expressions for KI and
K;p can be extracted from [17].

By using 8-node isoparametric elements and a 2 x 2
Gaussian integration, by letting the integration path go
through the integration points and embrace typically 20
elements out of a total of around 150, we have found the
stress intensity factors to be stable to within 1% for K,

and 2% for when KII/KI > 103 for changes in the mesh

K11
near the crack tip. This larger integration loop gives
improved results in comparison with [18] where a close tip

integration path was used. The results from a test case
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with a slanted edge crack in a rectangular plate has been

found to correspond to within 1% with values obtained from

boundary collocation.

ILLUSTRATIVE EXAMPLE

The above criteria have been applied to the configu-
ration shown in Fig. 1. Some 150 8-node isoparametric ele-
ments were used to model the platel Fig. 2 shows a typical
mesh once the crack has grown to some extent. The near-tip
elements were rectangular 8-node quarterpoint ones, Fig. 3,
except for cases where a more accurate description of the
near field might be needed, as when applying the local symmetry
criterion. In this case triangular quarterpoint elements that
describe the singularity correctly also in the interior of the

element have been used {19,20], Fig. 4.

RESULTS

The crack trajectories according to the different
criteria have been determined using an incremental descrip-
tion. The increment Ax has been held fixed, typically
equal to 0.066a, 2a being the total width of the plate.

In the projective criteria, KI and KII have

been determined using the integral scheme (AI:8). The values

obtained have then been used to predict the orientation of
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the next crack increment as given by the different criteria
A, B and C.

When applying the propagation criteria, a crack exten-
sion equal to half the increment length has been made in four
different directions within +10° from the orientation of the
previous increment. Then the direction for which KII =0,
criterion D, or local symmetry is at hand, criterion E, can
be deduced by linear interpolation. Then the increment has
been extended in this direction. In this way the criteria are
fulfilled in a position corresponding to the midpoint of the
increment.

The results are summarized in Fig. 5. As can be seen,
the difference between the curves is hardly distinguishable
on the scale of the figure. Furthermore, as shown in Fig. 6,
the differences in trajectories for increment sizes equal to
half of and twice the original one are negligible.

Kitagawa et al [21] have pointed out that if the path
taken by the crack deviates from the correct one for some
reason, the effects of KII will tend to compensate for the
deviation. This implies that a step by step investigation
of crack growth should give stable results. One would thus
expect that the effect of an angular deviation in an early
stage of the propagation would be annihilated after a number
of crack increments. Fig. 7 supports this idea showing that
the latter part of the trajectories where the first step is

oriented at 0 and -45° to the horizontal do coincide.

= 9 =

Cotterell [22-24] has used the concept of class I
and class II cracks in a series of papers on crack path
stability and these ideas have lately been further explored
by Leevers et al j{25]. In essence a pre-existing crack in
a mixed mode field would be class II, since it never returns
to its original orientation, whereas the smooth curved crack
propagation would be an example of a class I crack, since it
exhibits a tendency to go back to its original path after
being subjected to a perturbation. .

When it comes to the influence of Poisson's ratio on
the predicted crack paths, a recent paper by Bilby [26]
based on earlier works,[27] and [16],provides some material
for quantitative conclusions. Consider Fig. 8. A semi-in-
finite crack is subjected to a mixed mode loading situation
giving rise to the stress intensity factors KI and KII'
Assuming a kink of length unity to be present and denoting
the stress intensity factors at the end of the kink by k,
and k., then the functions hi relating the two sets of

stress intensity factors

L3

h, (e)KI + hz(e)KII

(11)

k2 = h3 (8)Ky + hy(8)Kp;

are given on graphical form in [26].

Using, as in previous sections, A  to designate the
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ratio KII/KI and analogously A* for k,/k, the graph in
Fig. 8 can be established.

An immediate observation is that the curves repre-
senting the predictions from criterion B for different values
of Poisson's ratio v all fall close together and in a
region where {A*/Ai attains small values. Furthermore the
influence of Poisson's ratio is only noticeable for large
values of |A|, which is in agreement with what was said on
criterion B above. One would thus expect the trajectories
predicted by criterion B for materials with different
Poisson's ratio to differ somewhat in a starting phase where
|Al  is large. After a few increments, a short propagation
distance, however, the different curves would tend to join.
Furthermore, since |A, is decreasing, the radius of curva-
ture would increase. These effects are illustrated in Fig. 9
where as expected the low poisson's ratio curve shows the
slowest convergence.

Ingraffea {28] has used different criteria for a
crack trajectory study and found a large discrepancy between
them. 1In view of the present analysis, it seems highly un-
likely that these differences should be due to the influence

of Poisson's ratio.

DISCUSSION

A number of currently used directional criteria, such
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that are projective in nature as well as true propagation
criteria have been investigated. For a smooth crack path,
i.e. a crack path having a continuously turning tangent,

93 - 0 in the criteria A, B and C. Through the equations
(3), (7) and (10) this condition implies A =0, i.e.

KII = 0 which is the main feature of the criteria D and E.

In this incremental description, however, tﬁe crack
path is composed of a sequence of straight segments. Since
the values of the stress intensity factors for a certain
crack tip position do depend on the orientation of the crack
tip, the fact that, generally speaking, A # 0 and thus
63 # 0 does consequently not mean any contradiction.

As can be seen from Fig. 5, the differences in the
predicted trajectories are vanishingly small. It could thus
be argued that, as long as the question of how the material
separation in the process region close to the crack tip
takes place has not been answered satisfactorily, the choice
of directional criterion becomes more a matter of computatio-
nal ease.

In this context the integration scheme allowing a
separation of the stress intensity factors becomes a particu-
larly powerful tool. 1In fact the only restrictions imposed
on the applicability of the expression (AI:8) are that the
crack faces are straight and free of traction inside the
integration loop, a requirement that is easily met in an

incremental crack growth description. When on the other hand
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the symmetry criterion is applied, care has to be taken to
assure that the points observed fall within a region where
the singularity is determining the stress field and thus the

influence from higher order terms is negligible.

In cases where the main interest is linked with the
trajectory on the whole, as for example in different aspects
of fragmentation, the detailed behaviour at onset has a
small influence. In addition the often claimed importance
of Poisson's ratio is shown to be almost non-existent.
Ironically enough these matters so far have retained the

most extensive attention in the analysis of mixed mode

fracture problems.
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APPENDIX I

SEPARATION OF Ky AND Kyy BY MEANS OF A PATH INDEPENDENT INTEGRAL

Betti's reciprocal work theorem in the case of vanishing

body forces can be written as

f (ut-ut)ds = 0 (AI:1)
r

where T is the boundary of a simply connected and bounded
region. u and t and 4 and t denote the displacement
and traction vectors respectively corresponding to two solu-
tions of a particular equilibrium problem.

Equation (AI:1) can be written

I=- f (ut-ut)ds = f (ut-ut)ds (AI:2)
2 Fo=prt

where T©'' 1is a circle embracing the crack tip. Orienting
a polar coordinate system as in Fig. AI:1 the first integral

in (AI:2) can be expressed as

[orur + creu8 - orur - orOUG]rOde (AI.:3)
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Here

L
u_ = r‘[f; (0)Kg + fz(e)KII] + olr?)

and (AI:4)

L]

N CIC L g2 (®)Kpg] + 0T

r

and analogously for the other components. fi and g; are
the well-known functions that describe the angular form of

the near-tip fields.

The corresponding expressions for the auxiliary prob-
lem have the forms

a, = r'%[%,(e)c, + %z(e)cz} (AI:5)

- —3 - - .
5=+ Aae 5 0)c4) (I:6)

The functions %i and éj are given in [17]. 1In the expres-—
‘sion given therein for 6re, however, a factor 3 seems to be
missing in the cos 3p/2-term.

carrying out the integration one finds

I = CKp - CoKyyp- (AI:7)

Since u and t are linear combinations of C, and C it
is clear that the second integral in (A1:2) will be a linear

combination of C; and C,. The evaluation of this integral

will thus permit the calculation of KI and Kll' In fact,

rearranging the terms in the integrand one finds

2

3e 6 ;. 38 .
K =.f {ur[(7 cos il 3 cos -2—)nx + 3(sin =— + sin %)nz] Al

re

€ 3¢ . @
Uy E)nl + (cos ;L + 3 cos E)ni] A,

+ [B(Sin 3—9 + sin

_ 34 e
o m, # orenQ){(Zu + 1) cos'i— - 3 cos 5] A,
... 30 .8
+ (orgnl4-cpnr)[—(2x - 1) sin 5= 4 3 sin 5] AZ} ds
(AI:8)
x = Yo [(7 sin 22 - sin &Hn, - 3 =0 g
11 l r 2 57, cos 3 + cos 5)n2] A’
r
36 3
+ ue[—(3 cos > + cos i)n1 + (sin %ﬁ + sin %)nz] A
+ (on + o_.n)|(2uw + 1) sin L. L
r re 2 - 2 sin 3 | A /

- (o_,n, + c‘nz)[(2u - 1) cos - cos

rl [§

(N1
5
N
—
b
N
S
o)
0

with:

! \

2 (1+w) (2mr?®)-

1
2(1+0) (2nr)”
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where u and w are defined in criterion B and n,, np are
the components of the outwards unit normal to TI".

For the case where the crack faces are unloaded and
straight within the integration path, there will be no contri-
butions from these segments. So, the integration is limited
to the outer part of the integration loop on which the stresses

and displacements can be calculated by finite element methods.
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h
?
F
» ?’/,7/
L'
b
. .
: XX
|20
L a
Fig. 1 The plate configuration analysed (only the right

half shown). The forces F' and F are in
equilibrium.
a=0.70m, b = 0.86 m, a = 0.0285 m, h = 0.26 m,

lo = 0.05 m, = 63.5 degrees.
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Fig. 3 The near-tip mesh with four rectangualar quarter-
point 8-node isoparametric elements surrounding
the tip itself. The position of the crack tip

corresponds to the origin of the local coordinate

Fig. 2 Typical mesh structure. The near-tip region A is system x-y.

enlarged in Figs. 3 and 4. The dashed lines indicate two integration paths.

Fig. 4 The crack tip surrounded by eight degenerated

quarterpoint elements.
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Fig. 5 Crack trajectories predicted by different criteria. . .
Fig. 6 Trajectories for crack increments ax = 0.132a,
Projective: solid and dotted lines, propagation ‘
0.066a and 0.033a. Total plate width 2a.

criteria: dashed line.
Criterion B, Poisson's ratio v = 0:254
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A= Ku/ K,

8 A= kz/ ki

Fig. 7 Influence on the trajectory from an initial

angular deviation. 6, = Oo(upper), 6, = 45°

(lower). The solid curve in the middle is the

trajectory for criterion B, Poisson's ratio Fig. 8 The kink angle © versus the ratio A = KII/KI
v = 0.25. for different ratios A*/A where A* = k,/k,.

The dashed lines give the predictions as given
by criterion B for Poisson's ratio v = 0.05

(0.10)0.45.



Fig.
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9

The influence on the trajectory in criterion B
from Poisson's number Vv given an initial angular
deviation. Upper curve v = 0.05, middle curve

v = 0.25, lower curve v = 0.45. The solid line
from the corner of the slot is the prediction

from criterion B and v = 0.25.
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Fig. AI:1 The boundary T =TI

small circle of radius

tip.

+

r
o

re,

where T' is a

embracing the crack



