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3. PHOTOELASTIC STUDY OF TWO BIAXIAL STRESS NOMENCLATURE
FRACTURE SPECIMENS At . transverse area of cross section
b B . load biaxiality ratio
Y BZ . local biaxiality ratio
C.R. Wachnicki and J.C. Radon B . nominal biaxiality ratio
n
Department of Mechanical Engineering dr, dy : lattice spacings
Imperial College of Science and Technology F : model fringe value
London SW7 2BX, England : ;

Gy gq» 90 93 g, ¢ dimensionless constants
n . fringe order
P, PI . nominal load, transverse load

B 4 b : parameters for fractional lattice spacings

ABSTRACT 8s o
00 oy : principal normal stresses ‘ '

The present paper considers the applicability of two fracture specimens, G = 0 . normal stresses on planes perpendicular to the y and x axis
»
: % : 3 x s
one a model in actual use (specimen A), and the other one specially designed for oy nominal stress as defined by Py/At
: p s . ; nom

the purpose (specimen B), for the investigation of crack growth under tensile 0 : stress sum = 0y + oy

biaxial stress. A photoelastic stress analysis of the two fracture specimens

in their testing environment leads to the establishment of reasonably uniform

stress biaxiality and symmetry in the working region. The separation of the
principal stresses is calculated from the two quantities of stress difference
and stress sum. The former is obtained from isochromatics and the latter from

isopachics evaluated by means of a numerical method based on Laplace's equation.

Design, construction and mode of operation of the testing equipment are
described and the results of the experiments conducted on suitable photoelastic
material - Araldite CT200 - are then evaluated. These results indicate that
the uniform working region of the new specimen is relatively larger and more

suitable for biaxial loading than that of the original design
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INTRODUCTION

In investigating certain phenomena such as fatigue crack growth in large
plates under biaxial stress, it is desirable to produce a well defined two-
dimensional stress field in a specimen. In this field, it is not only
requisite that the two principal stresses be of known magnitude, but also that
they should be exactly constant over a considerable area. The application of
existing concepts and techniques of fracture mechanics used in analysing crack
growth behaviour has generally been confined to uniaxial stress situations,
while biaxial stress situations have been less widely investigated.  However,
recent research in our department (1,2) provides a comprehensive survey of work
already done on fatigue crack growth in polymethylmethacrylate (PMMA) under
biaxial stress and reports on various aspects of crack growth such as fracture
toughness (3,4,5,6), fatigue crack growth rates (4,7,8), instability of crack
path direction (9), and slow crack growth rates in viscoelastic materials (10),
are now available. The most common of the fracture problems is fatigue, in
which cracks may be expected to initiate and propagate continuously along a minor
principal stress trajectory (11,12). The situation is further complicated as
the ratio between the two principal stresses may vary considerably during
propagation. Workers in close contact with experimental stress analysis are
aware of the complications besetting this problem and of the need for further
investigation into biaxial stress fracture testing. But before this can be
initiated, the development of a suitable specimen geometry for biaxial stress

testing is required.

The photoelastic study of biaxial stress fracture specimens described in
this paper offers the invaluable advantage of providing an overall picture of
their stress distribution. For the determination of individual stresses in a
biaxial stress field, however, isochromatic information does not suffice, and
the need for supplementary information is satisfied by auxiliary techniques

applied to complement the photoelastic method, i.e. the isopachic method

The value of photoelasticity in solving engineering stress problems in two
dimensions has been amply demonstrated by a number of investigations, mnotably
those carried out by Coker & Filon (13,14). Other technical applications have
been discussed by Frocht (15), Durelli & Riley (16), and the work of Jessop &

Harris (17) contains a wide range of important examples.

In order to obtain a photographic record of a large area of the model as

well as the projection of a bright image on to a large screen to map isochromatic
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transmission polariscope of the lens type was selected. The

es are described by Mylonas (18) and Mindlin (19),

ects and remedies of non-uniform illumination

fringe orders, a
characteristics of polariscop

while Mehrotra (20) discussed the eff

in lens polariscopes, and will not be elaborated further here.

The machine used for biaxial stress fatigue testing in the present work

(Figure 1) is one described in (2). A single hydraulic actuator applies in-

phase tensile loads to both axes by means of a simple mechanical linkage. In
e actuator can be varied to change the load
load P, divided by the tramsverse load

ios, Bn’ of 0, 1, 1.5, 2, 3

general, the load point of th
piaxiality ratio, B, defined as the normal

Px' The present arrangement allows biaxiality rat

and 4. Easy visual access to the specimen, indispensible in crack monitoring

and transmission photoelastic work, is provided by the straining frame, to which

a specially built lens polariscope can be attached.
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BIAXIAL STRESS FRACTURE SPECIMENS

TWO

The realisation that fracture studies require a specimen in which a crack
can propagate over 2 reasonably large distance in a controlled stress field not
drastically modified by its presence has led researchers to adopt cruciform and

square plate specimens.

In their investigation of fatigue crack propagation in biaxial stress fields,
Hopper & Miller (21) used a cruciform specimen whose design was similar to that
described by Mdnch & Galster (22), except for the central section which had been
reduced in thickness by a factor Qf four. Within a working region of 76 mm
square, compatible with the available machine space and load capacity, this

design produced an approximately 45 mm square area of uniformly strained plate.

Subsequently, M&nch & Galster (22) described the difficulties involved in
modifying the square plate configuration for biaxial loadings while Cridland &
Wood (23) compared square plate and cruciform geometries and showed that the
latter had reduced stress concentrations and that the extent of the isotropic
region increased as far as to cover virtually the whole of the central square

when subjected to equibiaxial stress.

Johnson & Khan (24) used 3 specimen similar to that described in (22) for
creep fracture studies, loading it through a "whipple tree" linkage, 2 loading
device which permits some misalignment of the loading pin holes and non-uni form
relaxation of the specimen during the test while maintaining constant stress
rather than constant displacement boundary conditions. It was the very
principle of whipple tree linkage that motivated the present design of a set of
load distributing shackles for the current fracture specimen. It was also the
reliance on the sources referred to above (22,23,24) which influenced the
original design of the biaxial stress specimen shown in Figure 2. The load

distributing shackles are illustrated as an assembly in Figure 3.

The new improved design evolved in the present work (Figure 4) was based, to
a certain extent, on the work of Monch & Galster. The load was applied to the
central region which was assumed, for the purpose of analysis, to be a square
plate of 100 mm width under uniform normal boundary stresses through nine narrow
shanks on each side of the specimen. The longer and more compliant these
shanks were, the less the influence of the transverse strain affected the applied
stress normality. A model was machined from a cast sheet of Araldite CT200
(1Cc1), 6 mm thick. When force was applied to the ends of the model, the vertical

displacements of all points of the clamped end became, under loading conditions,

|
1
|
{
|
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equal all over the breadth of the clamping region.

over an area of 100 by 30 mm; uniformit

Clamping was carried out

y in the clamping region was obtained

by i s
y inserting double layers of emery cloth between the model and clamping jaws

To . . .
ensure this uniformity of breadth, the authors had to resort to the use of

spec1a11y desxgued rigid steel clamps. To avoid initial stresses when loading,

the clamping pressure had to be as uniform as possible
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A PROCEDURE FOR THE NUMERICAL SOLUTION OF LAPLACE 'S EQUATION

The isopachic method is very attractive when used in conjunction with the
normal room temperature photoelascic technique as it produces a fine network of

the two principal stresses over the entire region under investigation.

3 . . '
Numerical methods have proved most practical in the solution of Laplace’s

equation and the determination of isopachic patterns, first introduced by Weller

& Shortley (25). The relaxation method developed by Southwell (26) is very

suitable for treating difference equations such as the improvement formula.

in any treatise on the theory of elasticity (27) that the

+ 02) or ¢) in a model in which the conditions

1t can be shown

sum of the principal stresses ((01

5 B . ] . i
for generalised plane stress are satisfied in 2 solution of Laplace s equation

is:

%0 3% _ (1)

The stress sum values along the model boundary were required to solve this

equation for a given region. These were conveniently obtained from the

jsochromatic fringe photograph of the model.  For purposes of calculatiom, 1t

was desirable to use an artificial boundary which avoids joaded parts of the

actual boundary. In the case of specimen A, the stress values on the artificial

boundary were supplemented with lateral extensometer stress sum values. The

procedure for specimen B was different in that the boundary values were obtained

by considering the stress distribution in the regions of the fillets and the

shanks. 1t was assumed the narrow shanks carried pure tensile loads and so the

actual boundary values were obtained solely from jsochromatic data.

The procedure followed in this numerical determination requires the

establishment of a square network on a scale drawing of the model. The

improvement formula (equation (2)) requires that the value ¢ at any point in

such a square net to be the mean of its four nearest equidistant neighbours:

= (2)
8. = {01 +0, % oz * ¢4)/4

An improved equation (equation (3)) is formulated by (25) for complex stress

distributions, j.e. in the boundary region, and is jllustrated in Figure 5:
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8, = (4 ”1*“’2*“’3*“’4) +o5+06+o7+08)/20 3)

1f the spacings are not equal, i.e. near the curvature of the fillet
boundary, a similar but more complex expression can be derived which takes the

form:

0, = G(gz ¢, +<g202+g3 0zt g, @4) 4)

In this equation, the values of the constants depend upon the distances of the
neighbouring points of interest. For the case shown in Figure 6, the constants
have the following values: G =sb/(s+b); 51 = 1/(1+s); gy = 1/(1+b);

gz = 1/(s (1+5)); g, = /(0 (1+b)).

As there are as many sets of improvement equations as there are interior
points of the net, Liebmann (28) has suggested a convenient iterative procedure
for solving these equations for the unknown values of ¢ at the interior points.
The procedure was initiated by assigning appropriate values to a number of
interior points of a net calculated from the actual loads on the particular
specimen. The square network was laid down on a quarter section of the two
models, which are symmetrical about two perpendicular axes, the position of the
net being such that a line of points lies along both axes of symmetry. These
points are improved in the usual way by assuming that values on opposite sides

of the line are equal and are improved simultaneously.

It is advisable to start by solving the difference equations with a very
coarse net and then successively cut the net spacing in half. The previous
solutions of the coarser nets are desirable because each halving of the net
constant, the convergence is about four times as slow. The reduction of the
net spacing is stopped when the desired accuracy in the solution has been
achieved, which may not be greater than the accuracy with which the boundary
values are known. In the tests, a square lattice was laid over the region in
question with lattice spacings ranging from 0.5 to 4 mm in an area 50 by 50 mm

for specimen B and 95 by 95 mm for specimen A.

The values calculated from this iteration were transferred to a finer net.
One part of the coarse net was covered by the fine net in close proximity to

the boundary leaving out the central square of the model which remained covered
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by the coarse net as shown 1n Figure 7. The extent of the fine mesh 1n the

wor 2 reglion depends on the size of the uniformity in the central reglon of
kin

the ISOCII’meﬂth patterns. This density of the net 1s

cimen shown by '
s re the function of ¢ curves very

desirable near the region of the boundary whe

i ested in
y and is also economical of computer time. For the net work sugg

rapidl
Figure 7, the appropriate formulae are:

- = s o, +0. +0)/4
o, = (°a+°b+¢d+qg)/4A i % (@g 1 ! L

(5)

3 = (49, + 5% +0.t20 + 506 )/16
wg = (2¢c+3¢f+¢k+3¢h)/9 5 °f b . y X A

Once the ets have been drawn the boundar values were read to the
he n h s y in

i i i e at each
rogram with selected values for the interior points. The valu
: improved by traversing the network in a definite

i i oint was then
e Each time the network was

ove discussed equations.

. . b
uence while using the a
o The iteration process was

the values were further improved.

traversed
, lues at each point reproduce themselves oOT

continued until the stress sum Va

satisfy the convergence criterion.

- 45 -

EXPERIMENTAL PROCEDURES AND RESULTS

Four experiments in all were carried out on both specimens for nominal
biaxiality ratios of Bn =0 and 2. Maps of isochromatics were obtained using a
specially constructed lens polariscope, the parts of the lens polariscope were
mounted on a frame which was rigidly bolted to the welded frame of the fatigue
testing machine as shown in Figures 8 and 9. Arrangement of polariscope
elements for isochromatics and a method for counting isochromatic fringes can be
found in most text books on photoelasticity (16). For specimen A, the
isopachic maps were obtained using a combination of photoelastic and lateral
extensometer data along an artificial boundary. A similar procedure was
followed with specimen B, except that the isopachic maps were determined by

using boundary conditions obtained solely from photoelastic data.

In test 1, specimen A was loaded uniaxially (Bn = 0) through the numerous
pin-jointed linkages of the specimen until a fourth order fringe manifested
itself at the centre of the specimen in the viewing screen for a normal load of

P” = 7.85 kN.  From the following equation, stress difference:

oy o) = nF ®

and for this test, n = 4 and F = 1.64 MN/m2.fr, therefore oy =g, " 6.56 MN/m?

at the centre. The model fringe value, F, was obtained from a small tensile
model machined from the same material as the specimen. The map of isochromatics
for this test is shown in Figure 10, and Figure 11 shows the isopachic map
obtained by applying the numerical technique.  The individual stresses were

calculated from the above figures by means of two equations:

o = ((oy + ox) + (cy - cx)}/z @

o, = ((cy +a) - (oy - qx))/z ®

the results of which are shown as a variation of oy as a percentage of cy at the

centre (Figure 12).

In test 2, specimen A was pin loaded biaxially (En = 2) until a second
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The local biaxiality ratio, B,
= 7.6 kN and

was observed at its centre.

fringe order
e X/Y plotter, was 2.05 for a normal load Py

measured from th ‘
i fference at the
- 3.7 kN, i.e. B = Py/Px' The stress differe

rse load P
- p o = 3.28 MN/m2. Figures 13 and 14 show the
x

g -
centre was found to be y

d the isopachic map, while Figure 15 shows a map of local

isochromatic pattern an
biaxiality ratio. )
men B was loaded uniaxially through heavy steel clamps untl

test 3 speci
- , ed for the normal load of

a relatively high fringe order of eight was observ

p = 8.43 kN. The stress d '
/ o = 13.12 M /m? The maps of isochromatics and 1
0 = = 12 B .

Figures 16 and 7 e vely The results © the two pa erns are
1 respective ly. f t tt T
1g ’

the same as for specimen A, B,

ifference at the centre was calculated;
sopachics are shown in

illustrated in Figure 18,

i iaxi B = 2) until it
In the final test, specimen B was loaded biaxially ( " ) f
ached the third fringe order corresponding to a stress difference ©
re

The normal load was Py = 5.95 kN and

= 2 the centre.
4.92 MN/m® at the s,

: _01- . . . . E
= i to a load biaxiality ratio o
transverse load was PI = 2.9 kN leading

The results of this test are shown in Figures 19 to 21.

i ici were computed
For reasons of comparison and simplicity, no actual stresses P y

all data being given in equivalent fringe order.
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DISCUSSION AND CONCLUSION

During the normal room temperature photoelastic tests for specimen B, the
central square of the model appears completely dark for nominal biaxiality
ratios of O and 2. These tests have proved eminently suitable for the
examination of the uniformity of the tension fields and of the very efficiency
of the method itself. Comparisons with specimen A for the corresponding
biaxiality ratios show the improvement in the homogeneity of the isochromatic
field.

The work reported here has bfought to light that photoelastic stress
separation methods alone do not yield satisfactory results\if a high degree of
accuracy is required. The isopachic method was chosen to determine the two
principal stresses in a plane field not only because of its accuracy but also
because of its ability to give an overall picture of the stress distribution.

In a particular loading mode, Bn = 0, it had to be proved that the second
principal stress, 0,, was negligible when compared with 0;- If it was to be
used as a criterion, the stress O, of the order of 17 of 9 had to be measured
accurately. This accuracy was achieved in specimen B when it was subjected to
a high fringe order of eight with a measuring accuracy of 0.05 fringe, using the

Tardy Compensation Method and the Isopachic Method.

A resumé of the results is given in Table I. As the data in the table
demonstrate, the new specimen is evidently not only adequate for its intended

purpose but also more efficient than the design A.

The results of the experiments show that design B is able to create a
practically uniform unidirectional stress field in the central square of the
specimen. By the nature of the way the loads are applied to the specimen, it
follows that any desired two-dimensional tension state can be produced by
biaxial loading, as perpendicular homogeneous pure tension, Px’ can be superposed
on the specimen which is independent of E@.

Close observation of the isochromatic fringes revealed that the fringe
pattern was more complex and extensive in specimen A than in specimen B.  This
was entirely due to the loading conditions, fringe order and the geometry of the
model. The influence of the disturbing lateral effect was only slight in
specimen B, but was more evident in specimen A. Even so, the central shanks of
specimen B showed a much higher fringe order than the edge strips of the uniaxial
case, probably because of the absence of constraint on the model in the

transverse direction which suggests that the specimen is more efficient in the
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biaxial mode for which it is designed.

i ibution
The isopachic method has the tendency to smooth out the stress distrib

in regions where the function @ is complex, i.e. the boundary region. T:::
characteristic of the method makes it completely dependent on the natu:e :

magnitude of the boundary values insofar as the stress at the centre o ht e
specimen is concerned. Moreover, as the stresses are evaluated from the

boundary to the centre of the speclmen, one cannot but suspect @ tendency to a
racy of the values obtained at the centre. The efficlency

depend on the size of the region under

d improvement formula, while

decrease in the accu
of the method will, therefore,
right choice of net spacing an

investigation and the .
inly affected by the convergence criterion and the

its accuracy will be ma

accuracy of the boundary values.

In conclusion the normal room temperature PhOtOelaSClC technique, together
’

¢ method, has proved that, for nominal biaxiality ratios of
,

with the isopachi
B =0 and 2, a lar
; i of B

For a particular case 2

ies less than 37 within a cent

ger uniform state can be achieved in specimen B than in

= 2, analysis has shown that the local

ecimen A. .
. ral square representing an

biaxiality ratio var

i i 7 for
area 527% of the effective working region for specimen B, but only 29%
: is i i i two-
imen A 1t follows that specimen B 1s ideally suited for use 1n a
e , inci ile but of
di sional stress state in which both the principal stresses are tensile
imensi

arbitrary magnitude.
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Figure 1: Biaxial Tatigue Machine,

Figure 3:

lctuator and specimen shackle assembly.
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Figure 4: Specimen B with load-distributing shackles.
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Figure 2: Biaxial fracture specimen design (all dimensions

millimetres).
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Figures 8 & 9:
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Arrangement of the lens polariscope.
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n= 3-89

Figure ll: Specimen A - isopachic pattern for B = 0,
n
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d’s as a

jmen A = Variation of

at the centre.

Figure 12: Spec
percentage of Gy

Figure 14: Specimen A
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- isopachic pattern for B = 2
n
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Figure 15: Specimen A - Variation of B as @

at the centre.

percentage of Bl

Fi . :
gure 17: Specimen B =~ isopachic pattern for B = 0
= 0.
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Figure 18: Specimen B - variation of o’y

percentage of o'y at the centre.

Figure 20: Specimen B - isopachic pattern for Bn= 2,
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Figure 21: Specimen B - variation of Bl as a percentage

of Bl 'at the centre.
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