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2. STRESS INTENSITY FACTOR Ky AND ENERGY RELEASE
RATE G IN THE CASE OF A TRANSVERSE CRACK IN
A CYLINDRICAL TENSIONED WIRE

by MM. A. aTHANAssTADIS(1), a.m. B 1ssenot(2)s

p. BREVET(1), D. FRANGOIS(3), A. RAHARINAIVO()

1 - INTRODUCTION

N

High strength steel wires or bars may break after
cracking due to either fatigue or siress corrosion. Their fracture
parameters may then be defined either empirically (1) (2) or by
calculations using finite elements (3), because the geometry has not
a cylindrical symmetry which may permit an analytical calculation
of stresses and displacements.

In this study, we present calculations of stress
intensity factor Ky and strain energy release rate G wusing a
numerical method named boundary integral equation method. The
calculation results are compared with the experimental data obtai-
ned on 12 mm diameter plain carbon steel wires, used for prestres-
sed concrete.

2 - CALCULATIONS OF FRACTURE PARAMETERS

2.1 = Prigeiples
The boundary integral equation method consists of trans-
forming partial differential equations describing the volume of a
solid body into integral equations on its boundary (&) (5) (6).

The advantage of this technique is apparent, since
it permits us to replace a three_dimen sional problem by a two

dimensional one, which simplifies the exploitations of data and
of results.

(1) L.C.P.C.
(2) C.E.T.I.M.
(3) U.T.C.
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The seeming lnconvenience of numerical calculations
might come from the difficulty of using the results under condi-
tions different from those which permitted the calculations.

In fact, we have to introduce data, such as Young's modulus, which
are those of real cases and to choose a sufficient number of confi-
gurations (e.g: the shape of the cracks) in such a way that the
calculation results may be applied by interpolation.

The program, soO called E.I.T.D., used in this study
was formerly well settled (5),(6)(11)(12)(13) for linear elasticity
problems in a three dimensional space.

Calculations were applied to cylindrical wires, in high
strength steel, 80 mm long, having a diameter D=2R=12mm, a
Young's modulus E = 210.000 N/mm2 and a Poisson's ratlo v = 0,3.

' The crack was located in the middle of the wire length,
perpendlcularly to its axis and symmetrically with respect to a
diametral plane (figure LYo

" The crack front was chosen as similar as possible to
the actual cracks observed in prestressing cables steels. For
des ribing the various shapes actually observed, the crack front
points have, in the crack plane, the polar coordinites r and &
verifying :
RZ 2

a2 b

2
N (R -zr)

where a 1s called the crack length on the periphery; b the
crack depth, R being the wire radius.

Because of the symmetries, calculations dealt only,whith
the quarter of the wire, bounded by the~crack and its symmetry
plane. The surface of this solid is cut ("discretized") into
triangles and quadrangles ("isoparametrical elements") (figure 2)

In every "element" contiquous to the crack front
(figure 3), thenodes corresponding to the middles of the sides
perpendicular to the front are located at the quarter of the side
length, near the crack front. This artifice, used by other wor-
kers (l4), permits us to correctly describe the displacement fleld.

The complete meshing includes in average 45 "elements"
and 128 "nodes".

Three types of loadings were studied tension,
compression and pure bending. Only the results corresponding to
the tension loading (calculations and experimentations) are indli-
cated.

We assume that the elements of the diametral plane
(axes 1-3) move in their own plane. The motions of the points
on the crack remain free, as any bulk motion of the piece is
avoided.

Under those conditions, the E.I.T.D. program permits us
to calculate the potential energy P of the cracked wire starting
from the displacement and stresses at every node.

We define the stress intensity facteur K; in direc-
tions perpendicular to the crack front, at each crack front point,

as
Ky = 2o 22 ey, B=m) (2)

with E' = E in plane stress field, i-e. at the wire periphery

E' =1:£TZ in plane stain fleld, at the core of the wire.
Besides, the energy is ¥ = % C!“’.j dFij and the
potential energy

P = ///w dV - //4; uy dv- v//?iul d S (3)
v v S

where S 1is the surface, V the volume, U, the displacement
1. the surface tension, f1 the bulk body forces.

'
The potentiel energy P 1is a polynomial versus parameters a
and b.
dpP
The strain energy rate is G = sup (-Eg) (%)
where dS is the virtual increase of the cracked area.

The figure & shows an example of the KI variation
along a crack front, calculations having used the displacements u.

It therefore appears that KI varles along the crack
front.

K 2
We defined at each point G, = 11 (5)

LA
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£ 1 + 5
and a parameter G = 3 G1 ds (6)

-5.

which gives the strain energy release rate versus the geometry
(figure 6).

3 - TENSILE TESTS EXPERIMENTATIONS

Experimentations were carried out using a plain
carbon steel wire, 12 mm diameter, with an ultimate tensile stress
of about 1500 N/mm®.

It was not possible to check the K local values.
Therefore experimentations dealt with the determInation of G
using the compliance method.

Compliance C 1is defined using u; = C Ti1, the strain
energy release rate
E=zT i R it
=z '1 9. 72 '+ dS (7)
The wire with a crack having an area S , has a
compliance C (S ) (figure 5). Experimentally, it deals with sharp
notches with a circular front, obtained by spark erosion (18).

The expes%mental values of the strain energy release rate are
noted G (Table 1).

4 - COMPARISON OF G MEASUREMENT METHODS

The table 1 gives the comparison of the methods of
determining the strain energy release rate, according to formula
(4), the formula (6) and experimentally.

It appears there is a'good agreement between those three
methods.

5 - CRACK PROPAGATION BY FATIGUE

This part o@ the study deals with the propagation of the
here above describe defects (figure 1) when a cyclic loading is
applied to the wire. The calculation of this propagation uses a
method formerly settled (13). The evolution criterion is the one
which was proposed by Lemaitre (16) : "among every possible incre-
ment of a same area dS of a crack, the actual increment is the
one which yields the maximum of the potential energy variation
rate".
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The criterion is written according to the following
relations :
2)

ds = -(ab-agb) -le (ab? - agby

G = sup (-%%) L8
with the inequalities da = a-a, >0
db = b-b°>/0 (9)
S G

It is proper to note that the quantity sup (-%% )rigourously is

not related to the assumptions made on dS. In searching for the
maximum, we assumed that dS 1is constant and thus da and db
are related. This assumption might {ntroduce errors which must
be evaluated with experimental checks. Generally sup (-dP) is

calculated using an objective norm depending on the paraggters
which describe the crack front. -

The stress intensity factor has a mean value
EG
R = ’ -2 (10)
and during the cyclic loading the range of K is

AK = K qax ~ Knin an

ds The calculations of the crack propagation assume
a law gy = c (A K)M™where C and m are constants depending

on the material. For the studied steel, using comparison with
analogous steels, we assumed C = 8.10-¢ , m = & in SI units.

Resolving the equations (8) needs the potential
energy P(a,b) to be known. The strain energy release rate G 1is
calculated using an {terative method and an integration of the
fatigue differential equation according to Range Kubba method.

At the starting point, the initial defects have
various shapes. Their propagation was calculated under repeated
tensioning (Kmln = 0).

The figure 7 shows an example of a calculated growth
of a defect.
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— As a general rule, the ratlo g tends to become stabl: Those abacuses may have practical applications for
abou ,75,value which corresponds to the ufiform Ky distribution they relate the critical size (bg) of a defect having a given
along the crack front. shape (b/a ratio) and the toughness (Gg) of a wire (diameter D).
Thus, following calculati Those calculations have been experimentally confirmed
the crack has a r;tio b - 8,75 and szgz,a:r::::r:soccurs whe using the compliance method and tensile tests on cracked wires
(mode I opening). The experimental results agree with those we
G (a, b) = cc' formerly published (9). )
5.2 - Oscillating tensionin Besides, the calculations of a crack growth by fatigue
""""" g"""'-'-g'-55295£999523£935 show that its shape tends to become stable and to be a configura-
tion for which the stress intensity factor KI varies very little
Oscillating tensioning fatigue tests were carried out along the crack front.
on wires for prestressing concrete described above. The applied
stress varied between 0,3 R  and 0,5 R, Ry being the ultimate Fatigue tests under oscillating tension confirm the

tensile stress. existence of that stable shape of the cracks. They also show that
fracture occurs when the strain energy release rate G 1is equal
Wires had notches obtained after spark erosion, and to a constant Gc independent of the initial crack. )

the study included 10 wires with various notches.

The figures 8 et 9 show the defect growth until
specimens break. The observed crack corresponds to g = 0,75 and

1 1
to a toughness Gc = 27 + 3 MPa m= (KIc =79 + 4 M PamZ).

This value is practically equal to the one which was B-E-E-E—B-E-N—E-E-§
obtained on the same steel, using circular cracks obtained after
rotative bending fatigue and for which

1
Kpe =802 4 HPa wZ 1/ - BRACHET M. - Annales de 1'Institut Technique du Btiment et des Tra=-
| vaux Publics 1977. N® 348 sup. Pe 30-50. :
| These experimental results are to be compared with )
the calculation results in repeated tensioning (with the same 2/ - RAHARINAIVO A. Utilisation des concepts de la mécanique de la rupture
stress range AOq)- par l'exploitation des essais classiques de corrosion sous tension.
_Corrosion, Traitement, Protection, Finition. Vol.20 (1972). P. (276-
The cycles numbers at failure ((Nf) are in good agree- 264)

ment. In table 2 the calculated Nf corresponds to G = e

’ ¢ 3/ - ASTIZ M.A. (1976). Estudio de la estabilidad de una fisura superficial
6 co en un alambre de acero de alta resistencia Tesis defendida en la
- NCLUSIONS Escuela T.S. de Ingenieros de Caminos, Canales Yy Puertos, Univsersidad

R —
Politécnica de Madride

The calculations of stre

of strain energy release rate G w:rzsc:::igzizztf?itogg cﬁ%f?gg— 4/ - CRUSE T.A. Application of the boundary integral equation method
rations of lateral cracks in cylindrical wires. This study permits to three dimensional stress analysis. Compaters and structurese.

us to draw abacuses giving the values of those parameters for Vol.3. 1973.

various crack shapes, simular to those which are actually observed.

The calculation results agree with those which were obtained by 5/ = LACHAT J.C. , WATSON J. "Application de la méthode des équations in-
other authors (3) (17) using finite elements and slightly different tégrales au calcul des structures”.

cracks. Mémoire Technique du CETIM n® 25, Mars 1976.

6/ = LACHAT J.C. , WATSON J., "Effective numerical treatment of boundary
integral equations : 3 formulation for 3 - D ¢lastostatics"e.
I1.J. for Numerical in Engineering 1976, Vol.10, p 991 - 1005.
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— ap | x k2
o b G,svr%‘;—s}&:}x/‘s%;:ds Cx¢,.ru.'m.
mm | mm < Pam Pam L Bom
/ ROOKE D.P., CARTWRIGHT D.J 0,52]0,40 2y A oLl
1/ - Poy .Jo., "Compendium of stress intensity factors 9,21 |
London 1976 H.M.S.0. ' Y 1, 574020 9,33 201 Al
BET HD. "HE ) 1,80 11,60 11,88 11,30
- . L i i " i
8/ canique de la rupture fragile". Masson et Cie PARIS 1978, 1,80 20,30 18,93 18,15
9/ - BREVET P., CU@TET. P., FRANCOIS. D., RAHARINAIVO.A. 2,10 22,14 21,31 20,80
Métaux Corro;;on. Industrie 1978. = p° 632 - P, 138 = 143 = 5. 16 2,40 24,00 23,30 22,90
10/ - SIH G._Methods of analysis and solutions of. Crack problems Noodhoff ’ 2,7 26,03 25,00 25,80 |
Mechanics of Fracture 1 1973. 3,30 28,05 27,19 28,40
11/ - BOISSENOT J.M., GAZAGNE L., LANGE D. 4,20 29,35 28,81 30,95 |
Some industrial applications of the boudary integral technique in 1,8q 20,87 | 19,90 19,10
the.of 3-D elastostatics - Proceeding of Int. Symposium on Inno- q 30,52 | 28,58 27495
vative Numerical Analysis in Applied Engineering Science - Versaille Eyl : ! ! 3
France 23-27 Mai 1977. 4. 71 2,40 33,93 | 33,07, 32,53
’ I
|
42/ - BOISSENOT J.M. LANGE D. - Méthodes des équations intégrales et 2,70 31,92 37,22 25
leurs appli§ations. Revue Technique SULZER n® Spécial Recherche 3,0 40,92 | 41,31 41,93
(to be published). . 3,30 44,15 | 45,48 | 46,95
13/ - BOISSENOT.J.M. - Three dimensional analysis of fatigue propagation 1,20 20,35 18,16 17450
of a semi-elliptic de fect. Proceedings of IACA Sumposium = 2,10 39,82° 38,73 37,15
Vienne 10-13/10/13977. 6,268 —2 . ‘ 2 z
2,70 54,83 55,07 56,98
14/ - HENSHELL R.D. and SHAW K.G., "Crack tip finite elements are 3,30 72,13 73,24 74,90
unnecessary". 80 36,95 34,66 -
Int.J. Num Meth Engng (1975) 9, 495-507. 9,43 1,80 ’ !
15/ - WEAVER J., #"Three dimensional crack analysis". TABLE 1 : Comparison of G values
Int. J. Solids Structures 1977, 13,-321-330.
16/ - LEMAITRE J. Extension de la notion de taux d'énergie de fissura-
tion aux problémes trédimensionnels et non=linéairese Initial Final crack
Comptes rendus de 1'Académie des Sciences T. 282 B (1976) 157=160.
oerack Calculations Experimentations
a b b (mm) b (mm)
17/ - BLACKB%RN}W-S- "Calculation of Stress intensity factors for e Ol — = 2 L = g N
straight cracks in grooved and ungrooved shaft " Engine. Fract
e s 1976. Vol.b. - P. 131-136. mreen e o m jm |8 (m i A M (et
2.05| .6 3.95/5.05=.78 29 500 4.10/5.20=.79 30 300
1.85| .9| 3.70/4.93=.75 27 800 3.60/4.70=.76 27 400
2.83| 2.4 3.73/5.04=.74 10 900 3.60/4.75=.75 10 400
——t
3.03| 3.0| 3.78/4.97=.76 9 100 3.90/5.00=.78 9 400
{4-33 3.0| 3.62/4.96=.73 8 600 3.80/5.07=.75 9 000

Teble 2 : Fatigue crack propagation
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