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SOME PROPERTIES OF THE BOUNDARY LAYER IN
ELASTIC BODIES CONTAINING A CRACK

)

Dr. G. Pram:l1 , Wirenlingen, Switzerland

Introduction

Consider an elastic body with a straight
fronted plane through-crack of length 2¢,
loaded by a uniformly distributed stress Ow
perpendicular to the crack plane (F i g. 1)
If such a body has an infinitely large thick-
ness, the problem is one of plane strain, and
the stress and strain field in the neighbour-
hood of the crack is described two-dimension-
ally by small deformation theory of elastici-
ty. According to this theory, at the crack
front the stresses and the strains becomeé
infinitely large and consequently the solu-
tion fails.

If in addition a load-free lateral surface
is introduced, the problem becomes three~
dimensional. The plane strain solution still
applies to the portion of the body remote
from the surface, but does not to a layer

of material adjoining the lateral surface,
which causes a perturbation to the original
two-dimensional configuration.

Since this perturbation quickly fades with
increasing distance 2 from the surface, a
typical boundary layer problem is raised.
Within this boundary layer there is a tran-
sition from a plane stress situation at the
surface to a plane strain situation in the.
interior. The lateral contraction near the
crack tip and the formation of shear 1ips,
phenomena familiar from testing fracture
mechanics specimens, indicate the existence
of a boundary layer.

This paper presents some information on the
lateral boundary layer, based on the evalu-

ation of a mechanical model describing the
z-variation of the out-of-plane stress O .
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Description of the model

In [1] a mechanical model is described,
which allows calculation of the z-variation
of oz, the stress component in the di-
rection of the crack front, for the kind
of problem shown in Fig. 1. A detailed
explanation can be found there. Here only
a brief discussion of the basic idea is
given in order to supply the reader with
2 basis for judging its results, which are
subsequently used to define the boundary
layer.

The volume of the body near to the crack
front, which is affected by the stress con-
centration, is divided into two cylindrical
elements. They are bounded by contours of
constant sums of the in-plane stresses Op
and oy, and their length equals the thick-
ness 2t of the body (F ig. 2).

Average values of (optoy) over the cross
sections of the elements are derived from
the near tip solution for the two dimensio-
nal stress field. This is possible because
the area under the 0,,0y versus r curve is
finite, although the stresses become infi-
nite at r = 0.

If the two elements were free to deform in-
dependently, they would suffer different
lateral contractions due to the difference

in the sums of the averaged in-plane stresses
and remain free of transverse stresses.
Continuity of the whole body may be pre-
served, if stresses Og and tpy are intro-
duced. Observing the poundary conditions

at the lateral surface as well as at the
plane of symmetry, z=t, and proposing a
function which describes the retroaction

of g, on op and Oy, average values for oz and
Tprz may be calculated as functions of z.

The model describes the mechanism of trans-
verse constraint correctly. Since it uses
average in-plane stresses as an input, it
can only be expected to yield average values
of the transverse stresses. This is an in-
herent limitation which is not uncommon in
engineering stress analysis. The usefulness
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of the results depends entirely on a reason-
aple choice for the size of the elements.
The method described herein was successfully
‘checked against experimental results, which
were very difficult to obtain to the re-
quired accuracy.

The radius b(y) of the outer element may be
chosen as the fading length of the stress
concentration and the radius of the inner
element as a fixed fraction of it, i.e. as
p.b(¥). Then,by varying u, information can
be gained about the variation ofag, and Tpy
with the distance r from the crack front,
since it is possible, for any value of u,
to calculate approximately the distance r
at which the average stress over the inner
element is equal to the local stress.

Definition of the boundary layer

The model described in the previous para-
graph gives an idea of the three-dimensional
stress field in deeply notched bodies of
finite thickness, if a solution of the
corresponding two-dimensional problem is
available. In the case that the thickness

is large compared to the crack length, the
solution assumes a Very simple form.

The following formulae give the average

stresses Oy in ana 1 around a small element
: rZ

of radius ub:

o (2) = 0,0 [1- (142z)e %] (1)
- Su -z

T (2) = VB (Tey) %Znax 2% € (2)

with

N

_ 2z )
Az = bV2u(1—u)(1+v) L

Since the fading length b, which is character-
istic of the two-dimensional stress concen- -

tration, depends on the geometry of the

notch and, in the case of a crack, is directly
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proportional to its length, Az is in prin-
ciple the coordinate z expressed as a frac-
tion of the crack length. In other words,
the geometry of the notch (or the crack)
enters the model via the spatial extension
of the stress concentration.

In formulae (1) and (2) 9 is the maxi-
. max

mum possible value of oz across an element

of fixed size, and this is achieved under

fully developed plane strain conditions for

the problem considered:

05, = (1-¥°)v 8O 300) oy ')
In formula (4) A(°r+°y)max is the difference
in average stress between the two elements
of the model, again under a plane strain
condition. Poisson's ratio for the material
is denoted by v.

The stresses according to formulae (1) and
(2) are shown in F i g. 3 together with

a sector of the element on which they act.
Since they approach their limiting values
asymptotically, the thickness of the boundary
layer may be arbitrarily defined by the po-
sition, where o, attains 95 per cent of its
maximum value. In a very thin layer of ma-
terial adjoining the surface a plane stress
situation is closely approximated. The thick-
ness of this sub-layer again may be arbi-
trarily defined by 0y reaching 5 per cent

of its plane strain value. An experimentally
found variation of b(optoy) within the
boundary layer is also included in F i g. 3.
It is derived from photoelastic measurements
on deeply notched specimens [2] and does
therefore not comply with the crack problem
treated here.

The thickness of the boundary layer

The thickness of the near plane stress layer
(0, < 0,05 °Zmax) and the total boundary
layer (97 < 0,95 GZmaX)in the plane of the
crack are plotted versus the element size M
in F i g. 4. On the basis of the assumption
that b(0) = c¢/2, which follows from the two-
dimensional solution, the scale on the
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abscissa may be converted approximately into
the relative distance y/c from the crack
front. So the increase in thickness of the
layers with increasing distance from the
crack can be seen.

Some remarks must be made here with respect
to the mathematical model: The theory fails
near the crack front for the reason mentioned
earlier in this paper and at values of u>0,5
in consequence of assumptions which had to

be made for the treatment of the model.
Further it should be realized that the stress
Ozmax according to formula (4) is not equal
to the local plane strain value, which is:

92plane strain ~ V(0r+0?) (5)

Comparing formula (5) to formula (4) shows
that the average stress Oz . which acts

on a finite element, approacées the local
plane strain value if u tends to zero, be-
cause then A(op+0y)pax approaches (op+ay) .
This means that the model predicts a true
local plane strain situation only in a small
region very close to the crack front. With
increasing r, Ogzpgx becomes progressively
smaller than 9zplane strain®

The thickness of the boundary layer at a
particular distance from the crack front in
bodies of varying thickness is shown in

F i g. 5. The upper diagram shows the thick-
ness d of the total boundary layer as a
function of the thickness of the body con-=
sidered, and 2s a fraction of the half crack
length c. The dimensionless thickness para-=
meters Ad and At are defined by analogy with
az (formula (3)).

It should be noted that with increasing
thickness of the body the poundary layer
thickness approaches a constant value. The
lower diagram shows that portion of the

body which is required to complete the transi-
tion from a plane stress to a plane strain
situation in x,y planes perpendicular to

the crack front, again as a function of the
body's thickness.
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Summary of the conclusions

Bearing in mind the reservations discussed
in previous paragraphs, the following con-
clusions may be drawn:

- The plane stress plane strain tran-
sition in a thick body with a through-
crack takes place within boundary
layersadjoining the load-free lateral
surfaces (F i g. 3).

- By the point of inflexion on the oy
versus z curve a thin near planer
stress sublayer is dgefined (F i g. 3).

- The thicknesses of the poundary layer
and the sublayer increase with in-
creasing distance from the crack
front (F i g. 4).

- The ratio of the boundary layer thick=~
ness at a given distance from the
crack front to the crack length de-
creases with increasing ratio of the
body's thickness to the crack length,
until it attains a constant minimum
value (F i g. 5). That is, according
to the model the transition in stress
state becomes steeper as the thick-
ness of the body is increased.

- If two bodies have, despite different
notch geometries, the same distribu-
tion of the in-plane stresses as
given by the corresponding two-dimen-
sional solution, and the same thick~
ness, their z-variations of o, and
1pz and hence their boundary layer
thicknesses are identical.

Final remarks

One of the most important and least under-
stood problems in engineering fracture me-
chanics is the application of test data
from laboratory specimens to full scale
structures.

The global load deformation behaviour of a
specimen can only be converted into the
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The left side of this criterion represents
a mechanical quantity relevant to the ex=
pected mode of fracture and involves the
solution of the mechanical problem. The
rignt side represents the critical value of
this parameter at the occurrence of the
fracture event considered. Both sides of
equation (6) depend on the local stress
state. It has for instance been shown, that
the linear elastic stress intensity factor
which may be used forp, varies only weakly
across the thickness of a cracked body, be-
cause it depends on the in-plane stresses
only. See [3] for a comparison of various
sources of information. The strong depen-
dence of the fracture behaviour on the
specimen thickness cannot be explained on
this basis, because the critical value of
the stress intensity factor, which appears
at the right side of equation (6), is a
stronger function of the stress state near
to the crack front and this stress state

is only completely defined if all three
stress components are known and accounted
for. A full understanding of fracture,
whether local or global, can thus not be
achieved without a three-dimensional fracture
theory.
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