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Abstract. The concept of a cohesive interface at the boundary of adjacent continuum elements that 

allows for material separation is a useful, versatile and well-established tool for many kinds of 

fracture mechanisms. The cohesive zone is a phenomenological model but based upon a sound 

physical background. Cohesive models can be applied to problems with or without initial cracks, i.e. 

classical fracture mechanics as well as debonding problems. As they represent a local approach, they 

are less sensitive to any geometry dependence of their parameters. 

 

Introduction  

As R-curves based on classical parameters of fracture mechanics like J or CTOD suffer from 

geometry dependence and have limited predictive capabilities, new concepts like continuum damage 

mechanics and cohesive models have emerged and find increasing interest, all necessitating 

computational tools. Cohesive elements have in particular proven their ability in modelling crack 

extension in thin-walled panels and shells, and the respective model parameters provide physically 

meaningful measures of the materials fracture toughness and tearing resistance. The general concept 

is attributed to Barenblatt [1, 2] who introduced a cohesive zone in the ligament of the crack, where 

material degradation occurs, in order to avoid the unphysical singularity in linear elastic fracture 

mechanics, Fig. 1a.  

 

(a)  

 
(b) 
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Fig.1.  Concept of a cohesive zone ahead of a crack tip: (a) Barenblatt’s model, (b) continuum 

and cohesive zone; (c) mixed-mode separation. 

 

As the actual distribution of stresses, σ(x), is unknown and is not measurable, either, the idea has 

been modified by introducing a cohesive law, σ(δ), instead, with cohesive stresses or tractions in 

dependence on the local separation, u u u     , which denotes the discontinuity in the 



displacement field in the cohesive zone, Fig 1b, c. The model became particularly interesting for 

practical applications when numerical methods for solving nonlinear problems like the finite 

element method (FEM), became available.  

 

The Cohesive Model – General Description 

Traction-Separation Law. The concept of a traction-separation law (TSL) was first used by 

Hillerborg et al. [3] for analysing crack formation and crack growth in concrete. It is the base for all 

modern realisations of the cohesive model in the framework of FEM. Cohesive stresses or tractions 

and separation are vectors,  n t s, ,  σ  and  n t s, ,   , in general, having one normal 

component, σn and δn  (corresponding to mode I), respectively, and two tangential components, σt, σs 

and δt, δs, respectively, For isotropic materials the two tangential separation laws are identical, 

leaving two functions, n(n,t) and t(n,t), to be determined, Fig 1c.  

Tractions become zero if critical separations c

n  or c

t  are reached. The maximum stresses, c

n  and 
c

t , called cohesive strengths are introduced as model parameters. An integration of the traction-

separation curve yields the mechanical work per crack increment which has been dissipated during 

the course of damage until final separation,  
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for normal and shear separation, respectively. These separation energies represent critical energy 

release rates in Griffith’ sense [4] and can be used as model parameters alternatively to the critical 

separations. For quasi-static ductile crack extension, c

n  equals the J-integral of Rice at initiation 

under mode I assuming deformation theory, and for real materials governed by incremental theory 

of plasticity,  

 c

n iJ   (2) 

holds. Different from constitutive equations of continuum mechanics, which represent relations 

between stresses and strains resulting in an energy per volume,  

 ij ijw dt   , (3) 

cohesive laws are relations between stresses and displacements and the respective integrals of eq. (1) 

result in energies per area. This constitutes an essential difference between damage models and 

cohesive models with respect to mesh sensitivity. 

The specific shapes of cohesive laws depend on the respective separation mechanisms. There is 

hence a variety of approaches in the literature, see e.g. overviews in [5, 6] and Fig. 2. Their 

adequacy to describe crack extension in a structure can be evaluated by comparisons between 

macroscopic experimental data and numerical simulation results. For certain damage mechanisms 

one may also conclude from micromechanical simulations to the cohesive law, e.g. [7, 8], and hence 

assign some micromechanical interpretation to the model parameters cohesive strength and 

separation energy [4]. Initially, all models were established for cracks of pure mode I under 

monotonic loading. Improvements and enhancements have been developed for mixed-mode loading, 

unloading and reloading, time dependence, cyclic loading and dependencies on various state 

variables like triaxiality, strain rate etc. 
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(b) bilinear [9, 10] 

0

0,5

1

0 0,5 1


/

c

/c

Needleman [1987]

 

(c) cubic [12] 
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(d) exponential [14] 
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(f) piecewise polynomial [22] 

 

Fig. 2.  Various traction-separation laws proposed and applied in the literature 

 

Hillerborg et al. [3] analysed crack formation and crack growth in concrete with their linear law, 

Fig. 2a, which is generally applicable to brittle mineral materials. A bilinear modification by Bažant 

[9, 10] introducing two additional shape parameters, namely 1, 1 at the inflexion point, Fig. 2b, 

yields a more realistic description of fracture in concrete [11].  

Needleman [12] introduced a cubic function, Fig. 2c, for ductile materials in mode I,  
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which Tvergaard [14] applied in mode II for simulating the debonding of fibres in a fibre reinforced 

metal. The exponential TSL, Fig. 2d, by Needleman [14] 
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where  exp 1e   has been derived from a potential of atomic binding forces for metals and 

bimetallic interfaces [15]. A characteristic of this function is that cohesive stresses do not vanish for 

c   but take the value of  c c0.105   . The separation energy, c, is the same as for the 

cubic function, eq. (4). It has been applied to dynamic fracture in brittle solids [16, 17] as well as for 

ductile materials [7, 18].  



Tvergaard and Hutchinson [19, 20] proposed a tri-linear separation law with a partly constant stress 

in the range of 1 2    , Fig. 2e,  
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for ductile crack extension in modes I and II. The two additional shape parameters, 1 and 2, 

increase its flexibility to characterise various separation processes. In Fig. 2e 1 c0.1   and 

2 c0.5   have been chosen. As special cases, Hillerborg’s model follows for 2 1 0    and the 

constant stress model [21] for 1 2 c0,    . Scheider’s piecewise polynomial [22, 23], Fig. 2f,  
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resembles the tri-linear function of Tvergaard and Hutchinson but is continuously differentiable in 

the transition points. For 1 2 c0.33     it comes close to the cubic function of Needleman, 

Fig. 2c, eq. (4). Scheider & Brocks [24] applied eq. (7) to a mixed-mode problem with crack bi-

furcation, namely the simulation of cup-cone fracture in a round tensile bar.  

The shape parameter δ2 in eqs. (6) and (7) is specific for a given separation process and hence part 

of the identification process of cohesive parameters, in general, whereas δ1, is predominantly of 

numerical importance. The cohesive elements are supposed to describe the degradation of the 

material but no elastic or inelastic deformations, which is the business of the continuum elements. 

The initial compliance of the σ(δ)-Kurve, 1 c coh1 E   , though numerically inevitable, should 

hence be as small as possible [25],  coh 1E E  , E being Young’s modulus and  the element size 

in the ligament, that is 

 1 1  . (8) 

A high initial compliance of the separation law may result in numerical artefacts during the 

simulations. It is some drawback of the separation laws of Needleman, Fig. 2c,d, eqs. (4), (5), that 

the initial compliances cannot be chosen independently of the cohesive parameters, σc und δc,  

The TSL is purely phenomenological but certainly depends on the actual separation process. Its 

choice is up to the user and decides on the correct prediction of measured macroscopic data as load-

displacement curves or crack-resistance curves. The effect of the various cohesive laws on the 

simulated crack extension has not been investigated systematically. Tvergaard & Hutchinson [19] 

studied the influence of the shape-parameters 1 and 2 in eq. (6) by varying them in the range of 

1 c 0.125 0.15     and 2 c 0.25 0.5     and concluded that they have little effect on the steady 

state toughness of a material. Though this investigation covers only a small class of cohesive laws, it 

is often referenced as evidence that the shape of the cohesive law has little effect on the results. The 

crucial question is not whether a load-displacement curve for a specimen can be predicted with all 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=continuously&trestr=0x2004
http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=differentiable&trestr=0x2004


cohesive laws, but whether it is possible to transfer the material parameters from one cohesive law 

to another. Based on simulations with several of the functions introduced above, Scheider & Brocks 

[26] showed that the cohesive law significantly affects the results and once identified model 

parameters are bound to the chosen function, see also [5]. 

Mixed mode crack extension. All cohesive models can be used for normal and tangential 

separation as well as for combined loading. At combined normal and shear fracture the shear 

damage will reduce the ductility in normal direction and vice versa:  

    n n n t t t n t, , ,f f       . (9) 

The interaction of shear and normal separation can be described by a damage variable, D, which is 

defined as 
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with an additional interaction parameter α [22], see Scheider (2000). Macauley brackets  indicate 

that the effect of n vanishes under compression. For α = 2 and c c

n t c    , the damage variable in 

eq. (10) equals to the normalized absolute value of separation, 2 2

n t    , and α →  defines a 

vanishing interaction of the separations.  

Introducing D, the functions in eq. (87) can be written as 

    n n n t t t, , ,f D f D     . (11) 

The cubic cohesive law, eq. (4), has been extended to combined normal and shear separation [13] 

with four independent cohesive parameters and α = 2: 
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A similar approach is used for the cohesive law proposed by Tvergaard & Hutchinson [20], eq. (6).  

The exponential cohesive law, eq. (5), has been extended to mixed mode by Xu & Needleman [16]:  
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where 0  is the separation at maximum normal traction, n 0 c( )   . It has only three model 

parameters, σc, δ0, q (0  q   1). For q = 1, the separation energies of pure normal and pure shear 

fracture are equal and q = 0.4289 yields identical cohesive strengths for both fracture modes. 

Unloading and reverse loading. Local unloading can occur in the cases of global unloading of a 

structure, crack branching or multiple cracks. Hence, assumptions on the behaviour of the cohesive 

elements under decreasing separation accounting for the irreversibility of the damage process have 

to be made. The terms “loading” and “unloading” will be used in the sense of increasing or 

decreasing separation, respectively. More generally, “unloading” is any change of the deformation 

by which the stress state deviates from the limiting traction-separation curve, which also applies for 

shear separation.  



 In ductile materials, the mechanical work for producing damage is totally dissipated, the void 

growth and hence the inelastic separation are irreversible and any reduction of separation occurs 

purely elastically with unchanged elastic stiffness, see upper row of Fig. 3. 

 In brittle materials, the elastic stiffness of the material is reduced by damage, but the separation 

vanishes when the stresses decrease to zero, see lower row of Fig. 3. 

Negative normal separation is physically not admissible as it indicates penetration of the adjacent 

continuum elements. The stiffness of the cohesive element should hence be as high as possible, at 

least as high as the initial elastic stiffness. The contact condition, i.e. prevention of penetration of 

adjacent continuum elements, has to be ensured also after total failure of the cohesive element. 

Unidirectional shear separation can be treated in the same way as normal separation. Reverse shear 

however requires a different model as damage may increase in both directions. In analogy to the 

isotropic hardening in the theory of plasticity, it is assumed that damage which has been activated by 

separation in one direction becomes also active in the opposite direction, if the same absolute value 

of shear stresses is reached. The shear stress will then follow the cohesive law again, whereas in 

between it varies linearly with the separation, see the right column in Fig. 3.  

 

 Normal Separation (mode I) Shear Separation (modes II + III) 

 

 

ductile 

 

 

 

 

brittle 

 

 

 

Fig. 3. Modelling of loading and reloading processes in the cohesive zone 

 

Realisation in the framework of FEM. Common FE codes base on the principle of virtual work. 

The internal virtual work including cohesive elements writes 
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with S being the stress tensor, E the work conjugated strain tensor, and σ the vector of the tractions. 

For an incremental analysis the second term becomes 
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where the field vector [u] is calculated by means of the matrix of shape functions Vu and the 

separations at the nodes [u]e, see Fig. 4a. The rank of Vu depends on the degree of the shape 

functions describing the element geometry and displacements. K is the stiffness matrix of the 

cohesive element. The derivative of the tractions with respect to the separations can be calculated 

analytically from the given cohesive law. The integration over the surface of the cohesive element is 

done numerically in local coordinates and transformed into global ones afterwards. Adopting an 

updated Lagrangean formulation, the local coordinate system  ,   is located in a mid section face 

bisecting the upper and lower surfaces and moves with the element, see Fig. 4b. 

 

(a)  
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Fig. 4. Realisation of cohesive elements: (a) 2D and 3D FE models; (b) Local coordinate 

system. 

 

Enhancements of the Cohesive Model 

Effects of external variables on cohesive parameters. Up to now, the cohesive parameters have 

been regarded as material constants which do not depend on any other quantities. This is not 

mandatory, however. Several applications exist, where a dependence on external variables has been 

assumed like 

 Changes of the thickness in analyses of thin-walled structures with plane stress or shell 

elements [27, 28], 

 Triaxiality of the stress state for ductile damage processes [18],  

 Strain rate for dynamic loading [29], 

 Hydrogen concentration in a model of stress corrosion cracking [30], 

and a dependence on temperature can be modelled likewise. Information on the actual values of 

these external parameters is obtained from the adjacent continuum elements and transferred to the 

cohesive elements, see Fig. 5a. In any case, this dependence has to be identified and described 

mathematically. 



Numerical analyses of void growth in ductile materials [31-33] indicate that cohesive strength, c, 

and separation energy, c, depend on the triaxiality of the stress state  
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The cohesive strength increases, the separation energy decreases with increasing triaxiality, see 

Fig. 5b, as is known from macroscopic tests. 

 

(a)  (b)  

 

Fig. 5. Effect of external variables on cohesive parameters: (a) Transfer of information from 

continuum to cohesive elements; (b) Dependence of c and c on stress triaxiality [33]. 

 

This dependence can be considered for the simulation of ductile crack extension [18]. Numerically 

predicted R-curves of fracture specimens under plane-strain conditions showed nearly no effect, 

however, as the separation energy contributes only negligibly to the globally dissipated work of 

plastic deformations [5, 34]. In addition, the dependence on the stress state is much less pronounced 

for higher triaxialities, see Fig. 5b. 

Rate dependent cohesive laws. Rate and time dependent fracture phenomena require respective 

cohesive models. For most metals the rate effect is minor except for high temperatures or dynamic  

(impact) loading. These effects are of great interest for the fracture behaviour of polymers and the 

simulation of adhesives using the cohesive model, however. Therefore, most of the models 

described below are developed for the application to these materials. 

A rate formulation of the TSL has the general form 

  , , , if     , (16) 

where the variables i are additional state variables (e.g. time, temperature, etc.).  

The rate dependence can be introduced in different ways depending on the material behaviour:  

(i) explicit rate dependence, (ii) viscoplastic behaviour, (iii) viscoelastic behaviour. 

In the first case, the tractions depend explicitly on the separation rate,  

  ,f   . (17) 

Some authors [35, 36] apply rheological models of the Kelvin-Voigt type, i.e. a (nonlinear) spring 

and a (nonlinear) dashpot in parallel, to describe this behaviour. The cohesive traction is the sum of 

the contributions of the spring and the dashpot,  

 1 2( ) ( )f f    . (18) 



A simplified form of this model assumes a frictional block instead of a spring and a linear dashpot.  

 0 0( , ) for         . (19) 

A model for crazing in homopolymers [37] contains the mixed term ( )   and thus cannot be 

represented by a spring-dashpot combination according to eq. (16). It is based on the linear 

decreasing law, Fig. 2a, with an embedded rate dependency: 
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In viscoplastic cohesive laws, the separation is split in an elastic and a viscoplastic part as in 

respective constitutive relations of continuum mechanics, 

 el vp    , (21) 

where the elastic part is defined by any of the cohesive laws described above,  

  vpf    . (22) 

and vp
, is given by some viscoplastic law, for instance [38]  
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depending on the temperature, , with A
c
, c

, and 0  being model parameters.  

Corigliano & Ricci [39] proposed a viscoplastic law for the separation vector  vp vp vp

n t, δ , 
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with  
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The accumulated viscoplastic separation, vp

acc , is defined as 
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and an, at, n and h are model parameters.  

Viscoelastic cohesive laws are of increasing interest mainly for elastomers and fiber/matrix 

composites. The nonlinear Kelvin-Voigt model of eq. (16) describes viscoelastic behavior. 

Alternatively, a functional formulation can be chosen where the time-dependent tractions, ( , )t  , 

result from a time integral over the separation history, multiplied by some time-independent 

function, stat ( )  , which can be any of the cohesive laws shown in Fig.2, [40], 

 stat

0

( , ) ( ) ( ) d

t

t G t D       , (27) 

or from a damage law with an additional threshold value σ0 [41], 



   ve

0

0

( , ) 1 ( ) ( ) d

t

t t E t D     
 

    
 

 . (28) 

A rather simple standard viscoelastic linear model is used for the relaxation module Eve(t - t’), which 

writes  

 ve ve ve

0( ) exp( / )E t t E E t t
     . (29) 

Fatigue crack growth. Current predictions of fatigue life are based on phenomenological laws, 

relating the amplitude of the applied stress intensity factor, ΔK, to the crack growth rate, da/dN, like 

the well known Paris law, which describes the fatigue crack growth under small scale yielding 

conditions and constant amplitude loading. A further restriction is its applicability to long cracks 

only. Cohesive modelling can provide an alternative approach, which is in general not restricted to 

size and geometry requirements, crack lengths or loading conditions. Note, however, that linear un- 

and reloading described in Fig. 3 is not capable to model crack growth under cyclic loading, but 

predict shake down and crack arrest in a structure [42].  

Cohesive laws with an unloading-reloading hysteresis as shown in Fig. 6 have been introduced by 

Yang et al. [43] and Nguyen et al. [44]. Linear unloading combined with nonlinear reloading 

allowed for phenomenological descriptions of dissipative mechanisms such as frictional interactions 

between asperities as well as crystallographic slip. 

 

 

 

 

 

Fig. 6. Hysteresis behaviour during loading 

and reloading processes for 

simulation of cyclic softening 
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Roe and Siegmund [45] proposed a model, in which the traction-separation behaviour of a cohesive 

element follows the cohesive law of eq. (5), but cyclic damage evolution decreases the cohesive 

strength,  

  fat

c c acc1 D   , (30) 

where Dacc is the accumulated damage accounting for the separation history. It is calculated by an 

evolution law including a threshold value. Different from [43, 44], Fig. 6, the unloading and 

reloading paths were assumed to be identical.  

These models [43-45] require a simulation of every load cycle and are hence restricted to a rather 

low number of cycles. DeAndrés et al. [46] calculated the evolution of damage in a cohesive 

element for a few loading cycles and then extrapolated to a larger number of cycles by 

  1 1n n n n

n

D
D D N N

N
 


  


. (31) 

They applied an exponential cohesive law with a linear unloading-reloading option to predict crack 

extension in a surface-notched round bar under high cycle fatigue loading. By repeated extrapolation 

and determination of the damage rate D N   more than 300.000 cycles were simulated.  

Fig 6 points to an additional problem with respect to the applied TSL. Cyclic softening due to an 

unloading-reloading hysteresis occurs after maximum stress, and the value of the latter obviously 



has to differ from the cohesive strength for monotonic loading. Hence, the cyclic TSL has to be 

different from the static one. The same holds for eq. (31), basically, but since fat

c  decreases with 

accumulated damage, the evolution law for Dacc will affect the appropriate choice of σc.  

Considering the various open problems, modelling of fatigue crack growth by a cohesive approach 

is far less understood and established than modelling of crack extension under monotonous loading. 

Parameter Identification 

Cohesive laws and cohesive parameters cannot be measured directly. Their identification is, as for 

many nonlinear problems, an inverse process of minimising the differences between measured and 

simulated macroscopic test data [47]. Uniqueness of parameters is a key issue as the idea is to 

transfer values, which have been determined from test specimens to analyses of other configurations 

[26], particularly large scale structures. Studies on parameter identification are reported in [11, 48, 

49].  

 

Summary  

The cohesive model can be regarded as a flexible, versatile and robust tool for computational 

simulations of damage localisation and material separation up to structural failure. Due to its 

phenomenological character, the model is adjustable to many different types of materials and failure 

phenomena. Cohesive laws can be established for various separation phenomena and can also be 

extended to time-dependent material behaviour. Separation processes, damage and fracture on 

different length scales can be simulated. The model can be applied to analyses of macroscopic 

engineering structures as well as heterogeneous microstructures. The restriction to crack paths which 

are predefined by the FE mesh can be a drawback in cases where nothing is known about possible 

directions of crack propagation. Crack branching has been simulated successfully, nevertheless [24, 

50].  

Within certain limits, the cohesive relation can be regarded as a material law, and the respective 

parameters characterise material properties with respect to damage and fracture independent of a 

specific geometry. There are no problems as in classical macroscopic fracture mechanics with 

transferring the parameters from small specimens to large components. 

Cohesive models endow materials with a characteristic length, and unlike damage theories, a 

cohesive law introduces a well-defined fracture energy, which eliminates mesh dependence, so that 

finite element solutions attain proper convergence in the limit of vanishing mesh size.  
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