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Abstract. This paper addresses a precise investigation of the behaviour of physically short 2D 

cracks in condition where LEFM concepts are applicable. The influence of the plasticity-induced 

crack closure (PICC) on the global and local effective stress intensity factor is particularly 

investigated and modelled under constant K amplitude loading in order to avoid any influence of 

loading history. Three-dimensional numerical models under Abaqus were used to determine the 

opening kinematics and to model the influence of crack length in the case of 2D through cracks with 

a straight crack front or a curved crack front. 

 

Introduction  
The concept of crack closure, consisting in a premature contact of the crack lips during cyclic 

loading, as initially proposed by Elber [1] is widely used to rationalize the propagation curves and 

has become one of the most intensively studied phenomena associated with fatigue crack growth. 

The closed crack is considered as non-effective for crack propagation. Therefore, the effective Keff 

(near tip) stress intensity factor range has been introduced to describe the effective driving force for 

crack propagation in condition of mode I crack opening. Consequently, characterization of closure 

has been intensively studied for long cracks. The higher crack growth rate of short cracks as 

compared to long cracks has been related in several cases to the lack of significant closure because 

of a small crack wake around crack lips [2-4]. When the LEFM conditions are satisfied, closure of 

short cracks has been shown to increase when cracks propagate, finally reaching the behaviour of 

long cracks [5, 6]. Suresh and Ritchie [3] suggested the following definitions by which short cracks 

can be broadly classified: i) crack whose size is comparable to the scale of the characteristic 

microstructural dimension is referred as microstructurally small cracks; ii) cracks for which the 

near-tip plasticity is comparable to the crack size are referred as mechanically small cracks; iii) 

fatigue flaws significantly larger than the characteristic microstructural dimension and the scale of 

the local plasticity are referred as physically short crack. Physically short cracks with initial 

dimensions larger than 3 to 5 times the average grain size, and when “far field” loading conditions 

allow the application of the linear fracture mechanic parameters, are relevant to the third type 

of this classification. This is the case of the cracks presently considered. The plasticity-induced 

crack closure (PICC) induced by constant stress intensity factor ranges is studied in a 304L stainless 

steel that undergoes high plasticity [7]. Three-dimensional simulations with both straight (for 

reasons of computing time) and circular curved fronts (for a better approximation of experimental 

observations of the real crack curvature) have been done to describe the influence of the length of 

2D physically short cracks on the contribution of crack closure on the effective driving force.  
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Geometry of the model  
The geometry modelled in this work corresponds to a CT-50 Compact Tension specimen with a 

thickness B=10mm, subjected to mode I loading. The analytical expression of the stress intensity 

factor is the following [8]:  
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where F is the applied load, a is the crack length. Here, w=50mm. Whatever the shape of the crack 

considered here, we will calculate K by using the edge crack length, as it is the one measured during 

tests via optical observations. 

For symmetry reasons, only a quarter of the CT specimen has been modelled. 

We impose here constant values of the stress intensity factor amplitude K, with a stress ratio 

R=0.1. The load is imposed by applying cyclic pressure on a quarter of the two holes of the CT 

specimen. 

We have used cubic linear elements, as generally used in 3D modelling [9, 10]. As important 

gradients of stresses and strains appear in the vicinity of the crack tip, the choice of element type and 

size of mesh is crucial, in order to obtain accurate results in a reasonable calculation time. The size 

of the elements should permit a precise characterization of the monotonic and plastic Rp zones. The 

minimum size proposed by Dougherty [11] is the following:  
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Here, we have chosen a mesh four times smaller than that of the above recommendation. Different 

constant values of K were studied, the minimum one being equal to  mMPaK .12  (leading to 

Kmax=13,33 MPa√m, as R=0.1) which leads to element size in the direction of propagation equal to 

0.05mm. 

A mesh with 20 elements through the half thickness of the specimen, and with an increasing level of 

refinement towards the free surface (Fig. 1), has been retained, after a comparison with regular sizes 

in the thickness. Far from the crack, a considerably larger mesh is used. 

In a first calculation, straight crack front has been considered, due to the simplicity reasons of its 

realisation. For reasons of calculation time, the maximum propagation da on the edge is 1.5mm, 

leading to 29 propagation steps, the initial crack length being equal to 0.1mm. 

In order to approach experimentally observed crack shapes in these conditions of loadings, a 

propagation test alternatively performed in air and in vacuum has allowed us to reveal for long 

cracks, the transition air/vacuum, and the corresponding crack shapes (Fig. 2). For long cracks, the 

crack shape is almost independent of the crack length. It appears that an arc of circle allows an 

accurate description of the crack shape: the corresponding crack length in the heart of the CT 

specimen is then approximately 1mm longer than on the edge. A second mesh has then been 

considered: the different crack fronts regularly change from an initial straight crack front to an arc of 

circle after a propagation of 1.5mm, the final crack shape being close to the experimental one: for 

1.5mm of propagation on the edge, the heart propagation is equal to 2.5mm. As a consequence, the 

crack length step is equal to 0.05mm on the edge and to 0.083 in the centre of the CT specimen. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Mesh of a quarter of the CT specimen; zooms to clarify straight and curved crack fronts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Examples of crack fronts obtained in 304L stainless steel, mMPaK 12 , R=0.1 

 

Numerical modelling of crack propagation and plasticity-induced crack closure 
Crack propagation schemes adopted here consist in releasing nodes for the current crack front, after 

applying a certain number of loading cycles. One crack growth increment corresponds to the size of 

the element ahead of the crack tip. In order to avoid numerical problems, releasing is performed at 

the minimum load. The number of cycles between releasing is a crucial parameter, especially for a 

material such as 304L stainless steel which presents strong hardening together with ratcheting. Here 

a combined isotropic and kinematic hardening law has been employed (Table 1). After various 

numerical tests, we finally performed 15 cycles between each releasing: this corresponds to an 

optimal solution taking into account the computational time. 

1 mm

Propagation

vacuum air1 mm

1 mm

Propagation

vacuum air1 mm



Table 1. Coefficients used for the behaviour law of the 304L stainless steel studied 

 

Elasticity Kinematic hardening Isotropic hardening 

E 

196000 

[MPa] 


0.3

0 

117 

[MPa] 

C 

52800 

[MPa] 

D 

300 
0 

117 

[MPa] 

Q 

87 

[MPa] 

b 

9 

 

The PICC is modelled by the contact of the crack flanks which is considered as a frictionless contact 

between the crack flank and an analytical rigid surface located in the crack propagation plane. The 

methodology is simple and enables easy determination of the local opening load Pop or opening SIF 

Kop (Fig. 3a). It is stated that local opening occurs when the monitored displacement perpendicular 

to the crack plane becomes positive during the loading stage of a cycle (fig. 3b). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. a) Location of the nodes allowing the determination of local crack closure                          

b) determination of opening load Pop. 

 

Results and discussion  

Influence of the crack length and of the crack shape on the contact surface. Figure 4 shows the 

contact zones observed at the lowest applied load (R=0.1) for three different edge crack lengths (0.5, 

1 and 1.5mm), and for both straight (upper figures) and curved (lower figures) crack fronts. The 

crack front is indicated by a dashed line on each figure. In all the situations, the major comment is 

that closure is concentrated on the edge of the specimens, where plane stress state prevails. The 

dimension of the contact zone in the thickness decreases during propagation, from 2 to 1 mm. The 

length on the edge reaches around 1.5mm at the end of the calculation. In the case of a curved crack 

front, the size of the contact zone in the thickness is close to 1.25mm. The contact surface is 

approximately twice smaller for curved cracks. 

For straight crack fronts only, a small contact zone, corresponding to the size of one element (i.e. 

0.05mm) is obtained for crack lengths of 0.5 and 1mm, but not for 1.5mm. 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Size and shape of the contact. Comparison between straight and curved cracks, for three 

different crack lengths, and for mMPaK 12 , R=0.1 

 

Local effective stress intensity factor range Keff.  The Figures 5 a) and b) present the variations 

of Kmax, Kop and Keff along the crack fronts, straight and curved, and for edge crack lengths equal 

to 0.5, 1 and 1.5 mm, for an applied value of loading equal to K=12MPa.√m. 

Kmax is obtained by an elastic simulation at the higher applied load in accordance with the crack tip 

geometry. Through plastic calculations, Kop and Keff are obtained by the two following equations: 
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where Pop is the load corresponding to local opening (Fig. 3b). 

For straight crack fronts, Kmax has the same evolution in the thickness for the three studied crack 

lengths. The computed average value of 13.3 MPa.√m is in agreement with the analytical 

expression, with constant values inside of the specimen close to 13.7 MPa.√m. A decrease of Kmax is 

observed in near-edge area of about one millimeter, leading to a value of 11.4 MPa.√m at the edge. 

For curved crack fronts, Kmax evolution is dependent on the front curvature. It is almost constant 

along the crack front for a=0.5mm but for larger cracks (a=1.5mm) and higher curvature, Kmax 

becomes higher on the edges than in the heart of the specimen with a steady state value 

approximately close to 13.3MPa.√m. Finally, it comes out that for curved cracks, the average value 

of Kmax is higher than 13.3MPa.√m, indicating that the analytical expression of K can be used only 

for straight cracks, i.e. under plane strain conditions. 
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Fig.5. Variations of Kmax, Kop and Keff along the crack front, for different edge crack lengths. a) 

straight cracks, b) curved cracks. 

 

The corresponding Kop curves are very similar for the three crack lengths, for both straight and 

curved cracks. At the same time, crack closure is mainly observed (Fig. 5) through a thickness layer 

of 2 mm near the edge of the specimen. However, a small amount of closure is predicted in the heart 

of the specimen, only for short straight cracks.   

For straight cracks, a progressive decrease of Keff is obtained from the heart to the edge of the 

specimen. Within the interval of crack length da here considered, variations of Keff with da are 

limited, but it can be noticed that the highest da value leads to the lowest Keff on the edge 

(6.2MPa.√m)  in contrast with the highest in the heart [11.3 MPa.√m]. For curved cracks, the trend 

with respect to the crack length is comparable, but Keff evolution along the crack front through the 

specimen thickness is substantially different: for the smaller cracks (0.5 and 1mm), Keff is reduced 

on the edge but less reduced than for the straight crack front, and for da=1.5mm, Keff reaches 

approximately a constant value all along the front crack (the variation is about +/- 4%).  

From these last results two major conclusions can be made:  

- Firstly, a curved crack front induces an increase in Kmax on the edge of the specimen while, even 

though for a larger crack length in the hearth of the specimen Kmax is smaller;  

- Secondly, the real crack curvature seems to result from the attainment of a constant Keff value all 

along the crack front, supporting that Keff is the true driving force for mode cracks in plane stress 

as well as in plain strain conditions, in contrast with the influence of these conditions on the closure 

contribution, which is much more enhanced in plane stress conditions.  

One important consequence is that, when a global evaluation of closure and thus of Keff is 

performed by some global technique such as compliance variation, the measurement of Keff is 

pertinent since the value is the same all along the crack front. In such condition, a numerical 

simulation of the closure contribution through compliance variation is valuable. 

 

Influence of the crack length on the global opening stress intensity factor Kop. The method 

based on the variation of compliance for crack closure determination by mean of a back face strain 

gage or/and a COD gauge mounted at the mouth of the notch, is simulated numerically by the 

displacement  of the nodes corresponding to the gage position. The plotting of K versus ’ [12, 13], 

where K ' ,  being the compliance of the fully opening crack, then allows the determination 

of a global value of Kop for the specimen (Fig. 6) [14]. 
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Fig.6. Compliance curve: K versus ’.  Schematic illustration of the method of determination of 

the global Kop 

 

The numerical and experimental values [13] of global Kop versus crack length da are compared in 

Fig. 7 for three constant levels of applied constant K (12 , 15, 18 MPam) under a stress ratio 

R=0.1. These values have been demonstrated to be equal to the one corresponding to the local 

opening at the edge of the specimen. As illustrated in Fig. 7, the numerical values of Kop obtained 

with an offset of 2% (as for experimental determination) are in a good agreement with the 

experimental measurements. The following results can be emphasized: first, a substantial increase in 

Kop with increasing da is shown for da lower than a critical length dacr which is expected to define 

the boundary between the so-called short crack domain where Kop depends on da, from the long 

crack domain where Kop is constant and independent on da. The general trend of the observed 

evolution of Kop with respect to da is consistent with previous results provided by the literature for 

physically short cracks grown in condition where LEFM concepts can be used [15].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7. Evolution of Kop versus crack length: comparison between experiments and simulation 

(straight cracks) for three different values of constant K applied  
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Conclusions.  
From this 3D numerical simulation of plasticity-induced crack closure in a 304L austenitic stainless 

steel, the following concluding remarks can be drawn: 

- For cracks lengths ranging between 0.1 and 1.5 mm, plasticity-induced crack closure as 

interpreted as the contact of the simulated crack flank with the rigid surface placed at the 

symmetry plane, is shown to result in a surface contact mainly localized near the edges of 

the specimen. 

- The shape of the crack front in the specimen has a strong influence on the variations of 

Kmax and Kop through the thickness. It seems, by comparison with experimentally obtained 

crack shapes, that Keff is the driving force for crack propagation. 

- Numerical simulation of crack closure with respect to the crack length for crack grown at 

constant K give a precise description of the increase of the contribution of crack closure 

with the crack length da when da is shorter than dacr in the short crack regime, Kop being 

constant for long cracks. 

- The specific effect of plasticity-induced crack closure has been clearly uncoupled from any 

other possible loading effect since tests and simulations are performed at constant applied 

K range, so as to avoid any effect which could be generated by some K variations 

related to the load history.  

- Therefore, numerically simulated tests are very helpful to get more in-depth description 

and understanding of the fatigue crack growth mechanisms. 
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