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This paper presents the results of the analysis of Green's functions for the problem of 

interaction between a crack and a surrounding dislocation. It consists in the determination of 

Green's functions based on the formalism of the complex potentials of Muskhelishvili. On the 

basis of this latest, Green’s functions are constructed for the Stress Intensity Factor (SIF) in 

Mode I and Mode II due to the unit dipole force applied to the main crack surfaces in the 

presence of a dislocation in front of the crack tip. Various stress fields have been obtained 

taking into consideration interactions between the crack and the microcrack for various 

configurations such as the orientation as well as the position of the microcrack with respect of 

the main crack. The effect of amplification and shielding on the resulting stress field is shown, 

through a study of mode I and mode II SIF. Obtained results are compared and agreed with 

those of other researchers. 

 

Introduction 

 

It is well known that in many brittle materials, crack propagation is accompanied by the 

formation of a damage surrounding the crack tip. This damage develops in a nearby tip-zone 

called also Fracture Process Zone (FPZ). This latest can reveal itself as the nucleation of 

many microcracks around the tip of a propagating crack 1, 2. These microcracks can have a 

significant influence on the propagation of the main crack. They can either cause crack 

amplification or crack shielding. Crack shielding reduces stress intensity factors of the main 

crack while crack amplification increases those values. These effects have been investigated 

by several researchers using exact analytical methods for some particular cases [3], and with 

analytical approximations under certain assumptions [4, 5]. Because this damage can 

constitute an important toughening mechanism, problems dealing with crack microcracks 

interactions have received considerable research attention since they were introduced to 

fracture mechanics. As a result, a wide body of literature, on this topic, exists 6. Solutions 

obtained are mostly based on the complex variable technique 7, or on numerical procedures 

8, or asymptotic estimates for remotely located cracks 9. Those techniques are usually 

different to a degree, but the basic principals remain the same. 

 

   In this paper, interaction between a macrocrack and a microcrack represented by a 

distribution of dislocations dipole is considered. A stress field distribution induced during 

these interactions is obtained using Muskhelshvili’s complex variables formalism which relies 
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on the Green's functions, solution to the multiple crack interaction problems. Contours of 

equal level of normalized stress intensity factor are determined for different orientations and 

positions of the dislocation-dipole with respect to the main crack. It is also shown that the 

existence of these microcracks affects the propagation of the crack appreciably and can 

possibly lead to the deterioration of the material. On the other hand, the effects of 

amplification and shielding of the stress field at the level of the vicinity of the main crack will 

be the subject of a meticulous study to elucidate the phenomena of the propagation of cracks. 

 

 

      Method of analysis 

 

  The analysis is based on the extension of the results obtained by Lo [4] and Denda [5]  

  considering the interaction of the crack and a surrounding dislocation. Using Muskhelishvili    

  complex variable formalism for plane isotropic elasticity where the two analytic functions or   

  complex potential functions,   and , of a complex variable z = x + iy, are derived to        

  express the stress and displacement fields according to 

 

                                          
                                           

                                                    
     

                                           

 

where μ is the shear modulus, κ is related to Poisson’s ratio (κ = (3 – ν)/(1 + ν) for plane    

stress and κ = 3 - 4ν for plane strain). A prime indicates the differentiation with respect to  

z and a bar a complex conjugate. 

 

It is known that for a point force applied at ξ with respect to the main crack-tip, the following 

potential functions are given by [6]; 

 

 
                                                                                                                                                  (2) 

  
 

where γ stands for the dislocation data and is given by [7]; 

 

  
         

On the other hand, for a force dipole corresponding to a dislocation representing a 

displacement discontinuity over the infinitesimal line segment as shown in Fig.1, previous 

potential functions Eqs. (2) can be written as; 
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and using the following differential operator; 
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Eqs. (4) become; 
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Note that the potentials  (z) and (z) as defined by Eqs. (6) satisfy the traction-free boundary 

condition on the crack surface. 

 

Crack dislocation interactions 

 

The stress field generated in the vicinity of the main crack-tip interacting with a dislocation-

dipole is obtained by the substitution of Eqs. (6) into Eqs. (1) under the following form; 
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Green’s function for the SIF analysis 

 

The SIF for both modes are expressed by the following relation; 
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which leads to; 
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Each mode I and II can be written separately as; 
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Where      

  

To avoid laborious computations,  Eqs. (10) and (11) are normalized under the form; 

 

              For  mode I                                                                                               (12)  

                                                                                                                             

              For  mode II                                                                                              (13)      

  

where    is the magnitude of the burgers vector. 

 

In this work, Green’s functions for the SIF due to a dislocation dipole at an arbitrary point z   

located at a distance  from the crack tip are illustrated for the followings cases:                                                                                                                                                                                                                                                                                                               

 

Case of a unit discontinuity in vertical direction across a horizontal element 

 

  Plots of the contours of equal values of Green’s functions near the crack tip are shown in Fig. 

4a. The main feature and valuable information obtained from these results is the predominant 

shielding effect the microcrack produces on the main crack. Notice also that when the crack 

propagates from the left to the right, the microcrack will play a role, first, of shielding, and 

then, of enhancing the stress. Besides, the borderline between the two effects is found at an 

angle of about  68 degrees with respect to the crack. Plots very similar were obtained by 

Shiue and Lee 7 and later by Rose 8 and Rubinstein 6. 

 

Case of a unit discontinuity in horizontal direction across a vertical element 

 

Contours of equal values of Green’s functions are shown in Fig. 4b. For this case, the 

amplification effect is more intense than the shielding effect and the borderline is located at 

about  35 degrees and  110 degrees with respect to the crack. As crack propagates from the 

left to the right, while the microcrack is stationary, Green’s function will switch sign 

depending on the location of the discontinuity. These results agree with those obtained by 

Shiue and Lee 7. It is shown in Fig. 5, the graph of the ratio (KI
*
) versus the arbitrarily 

orientation of the micro crack. As evident, a micro crack located closer to the main crack 

dominate the resulting interaction effect and reflect an anti-shielding of the damage while a 

reduction constitutes a material toughness. 

 

All the results obtained are summarized in table 1. As one can notice that for both cases, 

amplification effect is predominant once a microcrack gets closer to the tip of the main crack 

meaning in the active part of the damage zone. On the other hand, a shielding effect occurs 

once the microcrack is takes position in the awake part of the damage zone. 

 

 

 

(11) 



 

 

 

Table 1. Delimitations between amplification and shielding zones for Mode I and II. 

 

Case bx = 0 

 

Modes 

Dislocation-position 

with respect to the 

main crack. 

Delimitation between amplification and 

shielding zones (in degree). 

Amplification Shielding 

Mode I 

θ = 0°   68 68    180 

θ = 90° 36    108 
  36 

108    180 

Mode II 

θ = 0° 
  36 

108    180 
36    108 

θ = 90° 
30    80 

123    180 

  30 

80    123 

 

Case by = 0 

 

Modes 

Dislocation-position 

with respect to the 

main crack.  

Delimitation between amplification and 

shielding zones (in degree). 

Amplification Reduction 

Mode I 

θ = 0° 
  36 

108    180 
36    108 

θ = 90° 
30    80 

123    180 

  30 

80    123 

Mode II 

θ = 0° 
  30 

80    124 

30    80 

124    180 

θ = 90° 
  35 

108    180 
35    108 

                                         

 

4- Conclusion 

 

 It is shown in this study by using a potential complex functions based on Muskhelishvili’s 

formalism, one can determine the interaction between a macro crack and a surrounding 

dislocation. Green’s functions for the Stress Intensity Factor are employed in this analysis to 

quantify the effects on a crack of a micro crack represented by a dislocation dipole. For a 

variety of configuration (position as well as orientation) of the dislocation, amplification and 

shielding effects have been described trough the study of normalized SIF K
*
. It is proven, 

herein, that the intensity of a of microcrack increases significantly with increasing number of 

discontinuities. The overall effect of the damage is identified as being an amplifying effect. 

Since there is no toughening, the resulting local stress field would direct the propagation of 

the main crack. 
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Fig 1. Dislocation dipole interacting with a crack 

 

 
            

   
             

 

 

   

Fig. 2. Angular variation of stress intensity factor for . 



 

 

 

           
 

 

 

     
 

 

 

  

 

 

    
 

 

 

 

 

 

Fig. 4. Contours of equal levels of mode I stress intensity factor due to by. 

Fig. 3. Angular variation of stress intensity factor for . 

a- Case where θ = 0 b- Case where θ =90 

a- Case where θ = 0 

Fig. 5. Contours of equal levels of mode I stress intensity factor due to bx. 

b- Case where θ =90 



 

 

 

 
 

 

 

     

 

 

 

 

       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                          

                         

        

a- Case of θ = 0 b- Case of θ =90 

Fig. 6. Contours of equal levels of mode II stress intensity factor due to bx 

a- Case of θ = 0 b- Case of θ =90 

Fig. 7. Contours of equal levels of mode II stress intensity factor due to by 


