
The Experimental And Numerical Study Of Elastoplastic Deformation 
Processes, Limit States And Failure Of The Structure Elements Under 

The Monotonic Static And Dynamic Loading 
 

V.G. Bazhenov*, A.I. Kibets, S.L. Osetrov, E.V. Pavlyonkova, A.A. 
Artemyeva, M.N. Zhestkov 

 
603950, Nizhny Novgorod, pr. Gagarina 23, korp. 6, Russia 

*bazhenov@mech.unn.ru 

 
Key words: experiment, elastic-plastic deformation, damage cumulating, limit states, failure, 
finite element method, identification, parameters of the material 

 

Abstract. General axisymmetric problems with torsion and 3-D processes of elastoplastic 

deformation of structure elements, loss of stability problems, damage cumulating and limit states 

under the static and dynamic loading are considered. A mathematical model is based on a 

continual approach to the description of non-elastic material failure processes and generalized 

theory of plastic flow. The original method of determining deformation and strength 

characteristics of metal and alloy structural components under an inhomogeneous stress-strain 

state has been developed. The results of numerical and natural experiments for the processes of 

failure and limit states of the standard specimens and elastoplastic structure elements in the 

conditions of tension, compression, torsion and combined simple and complex loading are 

described. 

 

Introduction. By now a broad spectrum of mathematical models describing the nonlinear 

behavior of elastoplastic materials under the simple and complex loading has been developed. 

However, experimental verification has only been received by the models whose domain of 

application is bounded by the class of small elastoplastic strains and loading trajectories of small 

and medium curvature [1–5]. Under the complex stress-strain state (SSS) conditions, the 

equipment of these models with material functions and constants (true stress-strain diagrams, 

SSS type, fracture parameters) on the basis of direct measurements by the available tools is 

difficult even in the case of small strains. Under the strains preceding failure, an inhomogeneous 

stress-strain state arises in laboratory specimens and structure elements. Therefore it is 

reasonable to use mathematic modeling methods of deformation processes in laboratory 

specimens or structure elements in combination with experimental methods to identify the strain 

and strength characteristics of materials. The present paper aims at methodology for numerical 

solving axisymmetric problems with torsion and 3-D problem of elastoplastic deformation and 

damage cumulating. Limit states and failure of the structure elements in the conditions of the 

static and dynamic loading are analyzed. 

 

Numerical model. A mathematical model is based on a continual approach to the description of 

non-elastic material destruction process and modified defining relation, which describes failure 

as a lost resistibility of the material under the certain conditions [7-9]. The deformation process 

is described by the generalized flow theory with combined kinematic and isotropic hardening. 

The failure process is supposed to be quasi-equilibrium and it doesn’t allow an explicit 

dependence of the parameters and characteristics of the failure on the time. Common strength 

criterions are applied to predict the failure conditions; the history of the SSS is described by the 

hypothesis of the cumulative damage. A damage measure is determined by the non-negative 

function ≤1 [10]. 

The solution of the problem is based on a finite element method and an explicit finite-difference 

scheme of CREST type [7, 8, 11], realized in the “Dynamic-2” and “Dynamic-3” software 
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packages [12, 13]. 

 

Identification method of the strain and strength characteristics of materials under the 

conditions of complex SSS and large strains. Conventionally, the deformation and strength 

properties of the material are defined with experimental and analytical approaches, starting from 

experimental data and simplifying hypotheses that impose limits on the specimen shape and 

loading type. Such methods allow determining the characteristics of elastoplastic materials only 

in a homogeneous uniaxial SSS, which is not fulfilled in real experiment conditions at high 

strains. To study the strength properties of materials, especially at high strains, it is reasonable to 

develop an experimental-computational approach largely free from the limitations of 

experimental and analytical methods. This approach implies a combined analysis of 

experimental findings and full-scale (within continuum mechanics) computer simulation of 

deformation of laboratory specimens or structural elements without assuming a priori force or 

kinematic hypotheses. 

In the paper [14] the experimental-computational approach is applied to develop techniques and 

algorithms of studying the strain and strength properties of isotropic and composite materials 

under static and dynamic loading of structural components. The basis for the development are 

identification theory methods in combination with iterative schemes of successive refinement of 

material characteristics in the specimen which account for an inhomogeneous SSS, high strains 

and strain rate dependence. For all types of experiments implemented in system objective 

functions of comparison parameters which describe the deviation of physical quantities measured 

in nature experiment from corresponding values of computational experiment are derived. Then, 

a converging iterative process of refinement of current material function values in the specimen 

through minimizing the objective function by a sequence of computational experiments is 

constructed. The developed techniques allow reducing the inverse problem solution to the 

successive solution of a series of direct problems and finally obtaining a set of mathematical 

model parameters. Concurrently with identification, according to the proposed technique, the 

sensitivity of the calculated parameters of comparison with experimental data to model 

parameter variation is analyzed. The applicability domain of the experimental-computational 

methodology is thus defined by the applicability domain of the mathematical model of elastic-

plastic media, because the unconditional convergence of the iterative process guarantees that the 

sought model parameters will be found with a given accuracy.  

 

Deformation and failure of cylindrical specimens in the conditions of torsion and tension. 

In the paper [7] numerical and experimental studies of deformation processes in an axisymmetric 

samples (of steel 12X18H10T) of variable thickness with a cylindrical working part under 

monotonic kinematic torsional/tensile loading are considered. Experiments were conducted 

under the different torsional/tensile ratio. Based on the calculation results the stability domain of 

plastic deformation under the combined torsional/tensile loading was described. There is no loss 

of stability of plastic deformation with the formation of a neck in numerical and nature torsion 

experiments, unlike the case of tension. So the line, which separate stability and instability 

domains, has a point of inflection. In the case of prevailing tension, loss of stability and 

localization of plastic deformations occur on earlier stage of torsion. 

The experiments with loading along two-link broken deformation trajectories, combining two 

types of loading: torsion and tensile, are usually used to study the behavior of material under the 

complex loading. There are a wide set of such investigations and material models in the case of 

small plastic strains [1 – 5]. Authors of this paper have modified a variant of theory of plasticity 

[6] to the case of large strains [8]. To check the reliability of it quasi-static tests of solid 

axisymmetric samples (of steel 12X18H10T) along two two-link broken deformation 

trajectories: torsion until shear strain (2/√3) eβz ≈ 1, followed by tension until failure and tension 

until axial strain ezz ≈ 0.2, followed by torsion until failure, were performed. The experimental 

and computational data obtained in radial torsional or tensile loading practically coincide. After 



the trajectory break, the discrepancy between the computational results with combined hardening 

and the experimental results does not exceed 6%. Using the model with the isotropic hardening 

alone leads to an earlier formation of a neck in tension followed by torsion and the effect is 

significantly smaller if torsion is followed by tension. This can be explained by high sensitivity 

of the plastic deformation stability to the modulus of hardening. Under small elastoplastic 

strains, the delay trace (the width of the stress drop on the graph σi – κ) for steel is 1% in strains; 

it increases depending with increasing degree of strain. According to the above results, for the 

pre-strains κ = 0.36, 0.54, and 0.73, the drop width makes up 4–6% in strains, which means that 

under complex loading, the material memory due to the kinematic hardening is restricted by the 

decay trace in the region of small strain variations in the current state.  Since in the studied 

generalized axially symmetric problem, the formulas for the strain rates don’t contain rotations 

of material particles as a rigid body, the tensor of active stresses is determined by the same 

relations as in the case of small elastoplastic strains. As the computations show, for shear strains 

up to 150%, no oscillations in the shear stresses are observed. This is because, in contrast to [15, 

16], the active stress tensor is determined by integro-differential relations with decaying memory 

rather than by the tensor of plastic strains. 

Figure 1 displays the photograph of samples after tests until failure under monotonic torsional 

(digit 1), tensile (2), and combined torsional-tensile loading (3). One can see that unlike the case 

of tension with the formation of a neck, there is no loss of stability of plastic deformation in 

torsion, and the failure occurs due to shear strains in the plane perpendicular to the sample axis. 

In combined torsion and tension, a neck is formed whose cross-sectional radius is greater and 

length is smaller than the respective parameters in the case of pure tension. Under the combined 

loading, the failure occurs along a helical surface with maximal shear strains, depending on the 

relation between tension and torsion. 

 

 
 

Fig. 1 

 

 

Penetration of solid striker into a steel plate. The 3-D axisymmetric problem of lengthwise 

penetration of the elastic cylinder (R=1,275 cm, L=4,7 cm, density ρ=7,8 g/cm
3
, modulus of 

elasticity E=2x106 atm, Poisson ratio μ=0,3) into the round steel plate (R=13 cm, H=4 cm) with 

rigidly fixed boundary is considered. The results of problem solving at impact velocity 750 m/s 

are shown in Fig. 2, 3 in the form of finite element grids of the calculation domain on different 

time steps with marked damaged areas.  

Figures show that three zones of failure appear nearby face and back surfaces of the plate during 

penetration of the striker. Failure nearby the face, localized on the sample axis, occurs due to 

interaction between loading and unloading waves, which go from free surface of the plate. This 

zone of failure is being suppressed during penetration of the cylinder. The second failure zone on 

the face, caused by shear deformations, is distal from axis of symmetry on the distance of 1.2 

radius of the striker. Active shear deformations lead to appearance of a circumferential crack 

along the boundary of a forming disk in the upper half of the plate. In the bottom half of the plate 



there is a failure on the back, which is characterized by fast specific volume cracking. Active 

shear deformations, occurred in weaken area, lead to growth of the circumferential crack in the 

vertical dimension. The process of perforation of the plate has finished by the moment the 

circumferential crack reaches the failure zone, which goes from the face. The upper and the 

bottom zones of failure have connected and a plug goes out. Allocation of the plug’s material 

defects (Fig. 3) points on its fragmentation on two parts due to a spalling crack, which is in the 

good agreement with experiments [17]. 
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Limit states of round plates under the pressure. A lot of papers devote to investigation of 

static and dynamic process of deformation and limit states of thin structures (beams, plates, 

shells) by using rigid-plastic models [18, 19]. However, applicability of the rigid-plastic models 

for design calculation of the metal structures, which have elastoplastic properties, hasn’t been 

studied enough. It is well known that elastic strain energy has to be one order less than work of 

plastic strain to use the rigid-plastic model [19], i.e. strains have to be one order greater then the 

yield strength. It is need to take into account the non-linear geometry effects of deformation in 

presence of such bending deformations of thin structures, especially in the case of beams and 

shells. 

So investigations of applicability of the rigid-plastic models have been conducted through the 

problems of quasi-static and dynamic bending of round plates under the low and big deflection 

[9], based on a comparative analysis of the results of numerical calculation of the problems of 

plate bending with hinged movable and immovable supports in the different cases: geometry 

linear and non-linear problem statements, using the elastoplastic and rigid-plastic models. 

The problems of quasi-static and dynamic bending of thick and thin round plates with boundary 

fixed on hinged movable and immovable supports have been studied. Geometry characteristics 

of the plates are R=1 m, a thickness h1=0.2 m, h2=0.04 m. In the case of the elastoplastic 

statement Young modulus was E=2.1*10
5
 MPa, Poisson ratio was μ=0.3, in the case of the rigid-

plastic statement Young modulus increased a thousand times. Low linear hardening was set for 

ideal plasticity modeling. It should be noticed that in the case of the absence of elastic zone and 

hardening a resolving system of equations lose the property of hyperbolicity [20], and a 

numerical scheme becomes unstable.  

Fig. 4 shows relative discrepancy between the maximum deflections of the plate with thickness 

h=0.04 m, fixed on immovable support, which have been get for the rigid-plastic model in a 

geometry non-linear statement (RPN) and for the elastoplastic model in a geometry linear 

statement (EPL), and the deflections, which have been calculated by using the elastoplastic 

model in a geometry non-linear statement. The values of the plate deflections on the rotation axis 

max u/R (R is an initial radius of the plate), get by using the elastoplastic model in the geometry 

non-linear statement under the external pressure, are denoted on the abscissa. As figures shows, 

for deflection less than 0.025 R physically correct solutions can be get only by taking into 

account the elastic properties of the material, but in this case considerable discrepancy between 

the linear and non-linear statements is appeared, it becomes more than 10% for the deflection 

bigger than 0.012 R. For the deflection bigger than 0.025 R the rigid-plastic solution in the non-



linear statement becomes closer to the elastoplastic solution, the difference does not exceed 10% 

when the deflections have been bigger than 0.05 R. 

 

 
 

 

Fig. 4 

 

Fig.5 

 

 

Fig. 5 performs the results of modeling of bending of the plate with thickness h=0.04 m, fixed on 

immovable support in the notation of Fig. 4. One can see that when the deflection is low the 

rigid-plastic solution differs from the elastoplastic solution considerable due to no registered 

elastic properties of the material. Further the results begin to approach. The discrepancy between 

the rigid-plastic and elastoplastic solutions don’t exceed 10% when the deflections are more than 

0.12 R. At that time significant differences between the linear and non-linear statements begin to 

appear. The discrepancy becomes more than 10% for the deflections bigger than 0.03 R. 

Based on the conducted research, it is obvious that the rigid-plastic analysis isn’t applicable to 

estimate the deflections of the elastoplastic plates in the general geometry linear theory. Its using 

in the geometry non-linear statement is possible only for cases of the big deflections, for 

example, in a working operation of pulse processing of thin-walled specimens by pressure. 

Errors of the rigid-plastic analysis of the deflections decrease when the plate’s thickness 

increases; but the Kirchhoff-Love model is applicable only for the plates with the thickness one 

order less than the diameter. The rigid-plastic analysis can be used for the quasi-static loading to 

a rough estimate the magnitude of “safe” plate loading, because the deflections, corresponding to 

this loading, don’t exceed 1-2% of a diameter of the plate. The real limit loading differs in times 

from the loading, which has been found by using the rigid-plastic model, because of missing the 

geometry non-linear effects.  

 

Failure of balls under the contact compression. The set of experiments, based on test machine 

URC-20/6000, including the compression of two balls (with diameter Db=7.98 mm), which are 

made of high-strength ball bearing steel and loaded into open steel race (Fig. 6) [21], have been 

developed to determine the strain and strength characteristic of material of the ball. The tests 

were conducted with intermediate unloading up to the ball failure. Compressing plates were 

made of steel 02N18K9M5T-VI with diameter 14 mm and thickness 7.07 mm. The load passed 

through the steel 02N18K9M5T-VI plates. Failure load during the tests was 77.62 kN. 

 



 
 

Fig. 6 

 

 

Figs. 7, 9 depict the results of the experimental-calculation investigations. Fig. 7 gives the 

dependences of compressing loading on displacement of the support compressing plate, 

according to the experiment (solid line) and numerical modeling (dashed line). The good 

agreement of experimental and calculation data justifies the correctness of the obtained strain 

and strength characteristic of material. The numerical calculation shows that the failure has 

begun when plastic strain rate achieves 8% in the case of one ball compression and 20% in the 

case of two balls compression. 
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Fig. 7 

 

 

The failure mode, which has been get in the test, is demonstrated in Fig. 8. Fig. 9 illustrates the 

allocation of parameter of damaged at the end of calculation. Only the bottom ball has been 

broken down in the experiment; the size of the cone formed due to the ball destruction is: the 

diameter of cone basis Dc=4.1 mm, cone height Hc=3.0 mm. The surface of the cone is smooth, 

which shows primary shearing failure behavior.  

During the numerical experiment of the compression of two balls the cone was symmetrically 

formed in each of them. Evidently, the difference from the nature experiments connected to 

heterogeneity of the material and instability of the process of symmetric failure. The behavior of 

damage initiation and growth is in the good quality agreement with test results. 

 



 

 
 

Fig. 8 
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Summary 
The developed techniques allow the strain and strength characteristic of materials to be defined 

independently of the specimen shape and loading type for high strains and with regard to stress-

strain state inhomogeneity up to the moment of fracture, without the attraction of simplifying 

force or kinematic hypotheses. It seems possible to obtain the limiting fracture surface depending 

on the stress state type numerically calculated at the moment of fracture. The high information 

capacity and accuracy of determining the strain and strength characteristics of materials allow 

more reliable diagnostics of the material state and lifetime in structural components under 

service and alarm conditions. 
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