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Abstract. Stress singularities occur at crack tips, corners and material interfaces. Stress intensity 

factors and T-stress are coefficients in stress singular component and first regular stress term, 

respectively, of the William’s eigenfunction expansion series. It follows the general thought used in 

fracture mechanics, e.g. two parameter approaches, T-stress. Fracture theories provide relationships 

among fracture toughness, stress, and flaw size and are used, for example, to establish acceptance 

standards for material defects in structures. In the present work, we extended the analysis of 

constraint effect in sharp cracks to notches. The influences of notch radius on the Material Failure 

Curve (MFC) are very disputed. Experimental investigation in LEFM had been discussed for three 

points bending (TPB) specimen under various U-notch radius. The notch aspect ratio was varied in 

the following range a/w = 0.4, 0.5 and 0.6. In the first, the U-shaped notch is analyzed using the 

elastic solution for two dimensions geometries, including notch stress intensity factor Kρ and 

constraint, T-stress under various loading conditions. Finite element (FE) analysis is performed by 

the commercial Castem2000 logiciel. In the second, we proposed the notch fracture mechanics and 

particularly the volumetric method approach in the aim to study stress distribution at the tip of TPB 

specimens. The Notch Stress Intensity Factor Kρ and the effective T-stress are very detailed in this 

paper to determine the Material Failure Curve (MFC) for SENB specimens with various U-notches. 

The exploitation the (K-T) crack approach, which was derived from a rigorous asymptotic solution, 

is developed for a notch two-parameter fracture (Kρ-Tef). With Kρ as the driving force and the 

effective T–stress as constraint parameter, this approach has are successfully used to quantify the 

constraints of notch-tip fields for various proposed radius.  

 

Introduction 

It is well known that fracture resistance increases with defect tip radius and evolution can be 

considered using local fracture criterion particularly through the characteristic length.The 

characteristic length was firstly associated with notch radius in Creager and Paris [1] analysis of the 

stress distribution at notch tip.  For rounded V-notches, analytical expression of notch tip stress 

distribution for elastic material was developed by Filippi et al.[2]. They introduces in this analytical 

expression the distance between the origin of the polar coordinates system and the notch tip r0. This 

distance r0 depends on notch radius and notch angle. For the particular case of a zero notch angle, 

one finds : 
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This value is the same which was introduced by Creager and Paris [1] for a U notch with parallel 

sides. Then the mode I notch stress intensity factor is given by : 
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 This leads to the following value of the characteristic length called here effective distance 
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According to equation (3), the notch fracture toughness is a linear function of the square root of the 

notch radius and confirm by numerous experimental results [3]. Increase of fracture toughness with 

notch radius may be assumed due a low of constraint, the stress field at notch tip is strongly 

modified by increasing the notch radius. In order to check this assumption, we have analysis 

experimental results obtained by Akourri et al.[3] on SENB specimens having different notch radius 

and made in XC38 steel.  Stress distribution at notch tip has been determined by Finite Element 

analysis. The constraint was measured by the value of the effective T stress, Tef. Procedure of 

determination of this parameter and the build-up of  a material master curve (Kρ-Tef) are described in 

[4]. 

 

Material and specimens 
Notch fracture toughness has been determined on steel specimens. The material is a ductile steel 

(French name XC 38) with the following mechanical properties : yield stress Re= 304 MPa, ultimate 

strength Rm = 430 MPa.  
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Fig.1. Geometry and loading of the three-point bend plate. 

 

Specimens used for experiments are of SENB type. The geometry is described in Figure 1. 

Dimensions are listed in the following : thickness, B =25 mm, width, w =25 mm, length, h = 70mm, 

ligament size, b = 5, 10, 15, 17.5 and 20 mm, notch opening α=0° and the notch radius, 0.15, 0.25, 

0.5, 1, 1.5, 2 and 4 mm. Specimens are loaded until fracture and the critical load Pc is registered. The 

critical load for each specimen is plotted versus the non-dimensional notch length and presented in 

Table 1. 

 

 

Determination of notch fracture toughness 

Volumetric Method, is a mesofracture criterion method derived from NFM. Experimental proofs of 

the validity of this method are given in reference [5]. The average stress value within the fracture 



process zone is then obtained by a line method which consists to average the opening stress 

distribution over the effective distance. One obtains the second fracture criterion parameter called 

the effective stress ef . However, it is necessary to take into account the stress gradient due to 

loading mode and specimen geometry. This is done by multiply the stress distribution by a weight 

function  ,r  where r is the distance from notch tip and  the relative stress gradient defined by :  
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Several weights functions can be used including the unit and Peterson’s weight function and are 

described in [6]. The effective stress is finally defined as the average of the weighted stress inside 

the fracture process zone:  
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where ef , efX , ( )rσ yy and  ,r  are effective stress, effective distance, opening  stress.  In figure 

2, the opening stress distribution versus distance is plotted in bi-logarithmic axes; the relative stress 

gradient is also plotted on the same graph. The notch stress intensity factor defined from effective 

distance and stress by the following relationship : 

 

efef XK  2                                                               (6)  

 

A simple fracture criterion is obtain by using the critical notch stress intensity factor cK ,  and write 

 

cKK ,              (7) 

 

The critical notch stress intensity factor is a facture toughness values with units mMPa , if the notch 

has parallel side (notch angle equal to zero) and for elastic behaviour. 
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Fig.2. The notch stress intensity factor and the effective T-stress at the notch tip. 



 

 

Numerical determination of effective T-stress for notches 

Several methods have been proposed in literature to determine T-stress for cracked specimen. The 

stress difference method has been proposed by Yang et al.[7]. Chao et al [8] compute by Finite 

element method xx in direction = 180 ° (in the crack rear back direction) and define T stress as the 

value of xx in region where value is constant. Ayatollahi et al.[9] have determined T stress by using 

the displacement method in finite element and obtain then a stabilised T stress distribution along 

ligament. Wang [10] has determined T stress by superposition of a crack free specimen with a 

specimen with crack faces submitted to a pressure distribution. T is then computed by the sum of 

two contributions, one to crack pressure distribution and the second to the difference (xx-yy) at a 

distance equal to crack length). In this paper, we have chosen to determine T stress in a notched 

body by stress difference method because it is the simplest method and widely used and then allows 

comparison of our results. Numerically, we use the Stress Difference Method (SDM). This method 

is simply based on the T stress definition: 
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Examples of the computing T-stress distribution along ligament for a different specimens (CT, 

SENT, DCB and RT) with notches are given in Ref. [4] for a large range of non dimensional notch 

length a/w( 0.1-0.7). Experimental procedure is based on the William’s asymptotic solution 

Williams (1957) [11] for crack tip strains in the vicinity of a mode I crack in a planar elastic body 

and a strain gauge measurement technique proposed by Hadj Meliani et al. (2010) [4] for evaluating 

the T -stress under static loading directly from the experiments. The Notch fracture toughness 

transferability has been proposed as a ceffc TK ,,  curve and established from the tests of four 

specimen types (CT, SENT, DCB and RT) made from X52 pipe steel. For more details see for 

example, refs [12-14].  

 

 

Results and discussions 

Stress distribution at notch-tip has been computed using Finite Element Method. the CASTEMTM 

code was used for this purpose. SENB specimen exhibits a symmetry axis. In order to reduce the 

number of elements and saving time computing, only half the specimen has been represented by a 

mesh work. Loading conditions are represented by non displacement along y axis in the ligament 

section. A typical, mesh type near notch-tip is presented in Figure 3. 
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Fig.3. (a) mesh near notch-tip for SENB specimen and (b) specimen after deformation. 



Figures 4 show distributions of the notch-opening stress σyy along the ligament obtained from the 

FEA (as denoted by symbols) for the SENB specimens with a shallow  notch a/W = 0.2  and a deep 

notch of a/W = 0.7, respectively. 
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Fig.4. (a) Distribution of notch-opening stress along the uncracked ligament from the notch tip 

for SENB specimen with short notch a/W = 0.2 and (b) for long notch a/W =0.7 for different 

notch radius. 

 

Table 1. Recapitulation of different results for the SENB specimen. 
 

Ratio rapport Notch radius (mm) Max.Pc (kN) [3] σmax (MPa) Xef (mm) σef (MPa) Kρ (MPa.m
0.5

) 

a/w =0,7 

0,150 8,584 471,670 0,029 336,205 04,561 

0,250 9,056 400,300 0,045 282,865 04,755 

0,500 8,898 274,095 0,104 183,320 04,685 

1.000 10,359 227,760 0,141 160,215 04,768 

1,500 11,011 196,915 0,182 142,520 04,818 

2.000 12,157 195,250 0,365 137,850 06,600 

a/w=0,5 

0,150 24,988 2712,300 0,010 2423,200 19,203 

0,250 26,606 2179,650 0,022 1970,550 23,162 

0,500 27,752 1651,400 0,078 1270,000 28,108 

1.000 28,404 1215,600 0,162 905,000 28,866 

1,500 29,865 1050,550 0,261 755,815 30,617 

2.000 33,281 1037,500 0,570 630,000 37,693 

a/w=0,2 

0,150 59,932 5819,500 0,020 4968,395 55,682 

0,250 61,55 5170,000 0,040 3855,000 61,099 

0,500 63,505 3579,250 0,080 2865,850 64,236 

1.000 66,269 2752,950 0,130 2364,450 67,559 

1,500 67,415 2567,600 0,150 2240,550 68,767 

2.000 70.000 2185,350 0,270 1852,175 76,268 

 

The opening stress distribution is presented in Fig.5 for a notch with a  notch depth a/W = 0.5 and  

notch radius 2 mm. The notch stress intensity factor is calculated from equation (9). Table 1 reports 

the different results of notch stress intensity factor along principal direction (xx).   
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Fig.5. Stress distribution versus notch tip radius in a bilogarithmic plot (a/W = 0.5, ρ=2mm) 

 

 

Influence of the notch radius on notch stress intensity factor  

 

Numerical results of notch stress intensity factor (NSIF), for SENB specimens with different notch 

depth a/W, are compared to results of Akourri et al.[3] and plotted in Fig. 6. In Figure 6.a, evolution 

of NSIF variation allows determination critical radius c. Below this critical notch radius , critical 

NSIF is constant. Value c =1.52 mm  is compared to c = 0.85 mm from experimental results [3]. 
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Fig. 6 (a) Evolution of the notch stress intensity factor versus the radius for the SENB specimen 

(a/w =0.2, 0.5 and 0.7) , (b) numerical results compared to different methods in the literature and (c) 

example of the numerical MFC for a/w=0.5 compared to experimental Akourri results . 



 The numerical results are compared Neuber, Hardrath and  to Creager equation, Fig.6.b. Evolution 

of the notch stress intensity factor as a function of notch root radius shows an absolute minimum 

with the abscissa ρ ranging between 0 and 0.25 mm (Fig. 6(c)). Similarly, we notice that for radius 

values below ρc, the stress intensity factor decreases linearly with ρ and not constant as expected by 

equation (2). This results explains probably the fact that NSIF plateau is not found in some 

experimental results. Beyond this critical abscissa, notch stress intensity factor increases with ρ as 

expected by equation (2). For low a/W ratio , critical NSIF becomes approximately constant for a 

radius ranging between 0.25 and 1.52 mm. 

 

 

Material Failure Curve  

Numerical assessment points ( cefc TK ,, , ) for SENB specimen geometry with notch aspect ratio (a/w 

= 0.2, 0.5 and 0.7) are summarized in Figure 9. These points allow constructing a material failure 

curve called also a material master curve for different notch radius. The increasing of the notch 

stress intensity factor with the presence of constraint is in the range 27%– 49 % with the increasing 

of the notch tip for ρ =0.15 to ρ =2mm. One notes that the material failure curve for the X38 steel is 

very sensitive to notch tip.  

  

 
Fig.7. Material failure curve for the SENB specimen with a/W=0.2, 0.5 and 0.7. 

 

Notch Stress Intensity Factor (NSIF) with constraint  

 

A  linear increasing of the critical notch stress intensity factor Kρ with constraint parameter is  noted 

in  Figure 7 for SENB specimen  with non dimensional crack length a/W= 0.2 ; 0.5 and 0.7. These 

figure show also a decreasing of  notch fracture toughness with ligament size for different notch 

radius. The transferability problem has been expressed as a curve Kρ,c = f(Tef,ρ) where Tef  is the 

constraint parameter and ρ the notch radius. A polar coordinate system (r,θ) with origin at the notch 

tip is used. Notch stress intensity factor evolution with constraint is presented in the Figure 8.b for 

different notch depth. Increasing of the NSIFs is about 15.8% for short notch to 7% for very deep 

notch. Thus, the master curve is a way to take into account effect of constraint on notch fracture 

toughness and solve the transferability problem which occurs when fracture resistance is determined 

with other constraint conditions than structure or component.  
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Fig. 8. (a) Evolution of critical notch stress intensity factor (Kρ,c) with the presence of constraint (T-

stress) for SENB specimen (a/W =0.5), (b) with different notch radius (a/W=0.2, 0.5 and 0.7) and 

the error of the notch stress intensity with the notch radius. 

 

 

Conclusion and remarks  

  

Dependence of notch fracture toughness with notch radius has been obtained using the Material 

Failure Curve's relationship. Effect of  notch root radius through constraint on fracture resistance 

consists of  three phases : in the first one,  increasing of the NSIF for very short notch (ρ< 0.2mm), 

in second phase, it remains constant until a critical value of the notch radius ;  in the third phase Kρ,c 

increases linearly with ρ. The difference between   results given in Akourri et al.[3] reference and 

the above mentioned numerical results are explain by the effect of   constraint (not taken into 

account in [3]. The material failure curve is a tool introduce in Notch Failure Assessment Diagram 

(NFAD) as  an extension of the FAD generally used for crack-like defect. It is less conservative because 

it takes into account the real defect acuity. 
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