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Abstract. Regular structure materials are used in different technological processes. Therefore, investigation 

of the mechanical properties of these materials is of considerable practical interest. These mechanical 

properties are represented by the relationship between average stresses and effective strains, which can be 

obtained from the solution of the problem for elastic plane. In this paper, we employ the model of an elastic 

plane having a biaxial periodic system of round holes to analyze the dependence of the effective elastic 

parameters on the direction of applied loads and the geometrical characteristics of the system. Parameters 

anisotropy is demonstrated. The abnormally high values of Poisson’s ratio, which are impossible in isotropic 

media but observed in some anisotropic media, are found. 

 

Introduction 

In the current paper the method of multipole expansion is proposed to apply for a problem on an 

elastic plane containing a bi-axial grid of round holes (see, for example, [1]). Also dependences of 

effective compliances and Poisson's ratios on the periods parameters (in case of a quadratic grid), 

and the outer loads' directions are studied, as well as their anisotropy. An existence of the effective 

Poisson's ratio's values, greater ½, becomes apparent. Such effects are known for some anisotropic 

materials; see [2-4] for instance. An appearance of longitudinal strains under tangential loads (and 

vice versa, tangential strains under longitudinal loads) is noted. 

 

Problem statement 

 
Fig. 1. A bi-axial grid of round holes in an elastic plane 
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An infinite elastic plane contained the regular system of round holes Ll,m is considered (fig. 1). The 

holes centers form the bi-axial grid with arbitrary periods ωI and ωII. Loads on the holes' contours 

are zero. 

The current study aims to find the effective elastic properties (connections of average stresses with 

effective strains) and their dependencies on geometric parameters of the grid. 

 

Basic statements 

In the work, the method of the multipole expansion is used. The method is explained in [5, 6] in 

application to the problem of two holes and a regular grid of holes in an elastic plane. It is based on 

the Kolosov-Muschelishvili potentials [7]. A matter of the method is that the displacement function 

g’(t) on each of contours is expanded into the power series 
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here t is a local complex coordinate of a point on the contour (|t| = 1). 

Then the singular boundary integral equation (SBIE) [8, 9] can be transformed into the system of 

the linear equations of the complex expansion coefficients (their set uniquely defines the strain-

stress state of the plane). 

By definition, effective compliances of the periodic structure connect the effective strains with the 

average stresses 
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Here one can see that the compliance Sijkl is equal to a strain response ij
~  on a unit effect kl~  (the 

other stresses must be zero). By the way that means that the problem condition must be plain-stress 

state: κ = (3-ν)/(1+ν). According to [9], the following expressions are correctly for the free contours 

problem 
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Here  IIIIm S  is an area of the basic grid cell. 

From 
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one can get  
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Hence, average strains contain two terms. The first term corresponds uniform strains of the plane 

without holes under effect of stresses equal to average  ~,~,~ s . The second term is a correction 

which introduces the holes existence. Note, that the correction is defined by only two terms of the 

multipole expansion. Moreover, the correction for the average volume strain is defined by the term 

Im g0, describing the confining contour deformation; the corrections for the shear components of 

the average strain are defined by the terms g-2, describing the pure shear strain of the contour. 

On the superposition principle, the multipole expansion terms can be presented as a linear 

combination  ~,~,~ s : 
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Substituting the combinations Eq. 10 into Eqs. 7-9, the average strains get the following form: 
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Here     1222112211
~~;2~~~;2~~~  s  are the average stresses components in the grid, 

 ,,s

ng  are the expansion coefficients calculating in cases for the corresponding unit average stresses. 

The effective compliances get the following forms (according to Eq. 2) 
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Here, E and  are the elastic parameters of the plane material. 

Eqs. 14-21 are used below for the effective compliances calculation. 

 

Effective compliance dependence on the quadratic grid period 

In this section a quadratic grid is studied: III i . 

Values of the effective compliances are calculated for different orientations of the holes grid. In 

view of the problem symmetry, it is enough to examine the orientation angles from 0 to 45 

inclusive. The calculation results are presented in fig. 2 (d is a distance between the neighboring 

holes: Rd I 2 ). 

In case of d ≥ 10R, an anisotropy influence on the effective compliance distribution is negligible. 

Decreasing the distance d, the anisotropy influence begins to behave as a sinusoidal distribution 

with extrema in the orientation angles 0/45, or 22.5 (for the "mixed" compliances like S1112). 

If d < 0.5R the effective compliance distribution form changes, a local maximum appears in range 

 25-28 ( 17-20 for S1212) and a local minimum in range  28-33 ( 12-17 for S1212). The 

"mixed" compliances extremum at 22.5 becomes sharper. 

The dependences of the effective compliance S1111 on the distance d for different grid orientations 

are presented in fig. 3a. Obviously, the compliance S1111 tends to the plane compliance with distance 

increasing. So, a difference S1111 between S1111 and the plane compliances is presented in fig. 3b. 

The log-log plot demonstrates that the dependence S1111(d) tends to a power-like function 

S1111(d)  E
-1

·3.22·d
-1.67

. The compliance difference behavior for a diagonal orientation (45) is 

the closest form to this function. 
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Fig. 2. Effective compliances Sijkl vs. grid orientation angle () 

for the distances d/R = 10, 4, 2, 1, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1 
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Fig. 2 (continuation). Effective compliances Sijkl vs. grid orientation angle () 

for the distances d/R = 10, 4, 2, 1, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1 
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Fig. 3. Dependence of S1111 (a) and S1111 (b) on the distance d/R for different grid orientations. 
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Dependences of an effective Poisson's ratio on the distance d 

An effective Poisson's ratio νeff = -S1122/S1111, and its dependence on the plane's Poisson's ratio ν, are 

studying in this section. Values of νeff for different ν and different grid geometric parameters are 

presented in fig. 4. 

Note that the effective Poisson's ratio demonstrates a behavior similar S1111. In case of d > 10R the 

anisotropy influence is insignificant that means νeff is almost constant and closed to ν. For 

0.5R < d < 10R the anisotropy manifests itself as sinusoidal dependence on an orientation of the 

grid; for d < 0.5R the sinusoidal behavior changes, a local maximum appears at orientation values 

 24-26, and a local minimum near  33. 

It's worth noting that the influence of the plane's Poisson's ratio ν decreases when the distance d 

increases. Thus the effective Poisson's ratio νeff becomes substantially depending on a grid 

orientation. 

Plots of dependences of the effective Poisson's ratio νeff on the distance d for ν = 0 and ν = 0.5 are 

presented in fig. 5. The plots demonstrate that the dependences can have quite complex form. For 

example, in case of ν = 0.5, at first the effective Poisson's ratio decreases when the distance d 

decreasing. Then, reaching the minimum in range from d/R = 0 to 4, it becomes to grow (excluding 

the orientation angle 0). So, if outer loads are known, it is possible to calculate such geometric 

system parameters as make a transverse strain minimal under the longitudinal stress conditions. 

It's important to note that there are wide areas of grid orientation values (on condition d < 2R), 

where the effective Poisson's ratio νeff exceeds the maximal value 0.5 in isotropic materials. Such a 

behavior is known for some anisotropic materials. Surveys of materials with anomalous effective 

Poisson's ratio (νeff > 0.5 or νeff < 0), and a theoretic rationale of this effect, can be found in [2-4]. In 

particular it is demonstrated that a reason is a structural peculiarity of a crystalline lattice of these 

materials. 

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45
 

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45
 

Fig. 4. Effective Poisson's ratio eff vs. grid orientation angle ()  

for the distances d/R = 10, 4, 2, 1, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1 
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Fig. 4 (continuation). Effective Poisson's ratio eff vs. grid orientation angle ()  

for the distances d/R = 10, 4, 2, 1, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1 
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Fig. 5. Dependence of eff on the distance d for different orientations ( of the plane is 0.5 and 0) 
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Conclusion 

A behavior of effective elastic parameters (compliances and Poisson's ratio) of an elastic plane 

containing a bi-axial system of round holes is studied in the given paper. 

Anisotropy of the effective elastic parameters is demonstrated. Three areas of values of a ratio d/R 

are defined, where the anisotropy character differs substantially. In first area (d/R ≥ 10) the 

anisotropy is negligible (although the effective elastic parameters can differ from the plane's 

parameters). In second area (0.5 ≤ d/R ≤ 10) the anisotropy has an expressed sinusoidal kind. In 

third area (d/R ≤ 0.5) the sinusoidal kind gets broken; local extrema appear at grid orientations 

different from longitudinal (0) and diagonal (45). 

Difference between the effective and plane's longitudinal compliances is studied. The power kind of 

the dependence of this difference on the ratio d/R is shown. 

Lowering of the influence of the plane's Poisson's ratio on the effective Poisson's ratio is 

demonstrated: in case of d → 0, eff substantially depends on the grid orientation.  It is necessary to 

note a wide range of grid orientations where eff > 0.5. Such anomalously high values are 

impossible for isotropic materials but found for some anisotropic materials. 

A possible further work development is proposed at two directions: 

(1) a study of strength properties (stress concentrations in the material structure); 

(2) an extension of the problem into a case of 3D medium [10]. 

The work is carried out in Project РФФИ 08-01-00696. 

 

References 

 
[1] E.I. Grigolyuk and L.A. Fil'shtinskiy: Perforated planes and shells (Nauka, Moscow 1970), in Russian. 

[2] V.A. Gorodtsov and D.S. Lisovenko: To mechanics of carbon and other layered nanowhiskers. Inzhenernaya 

fizika, 4 (2009), pp. 36-38, in Russian. 

[3] R.V. Goldstein, V.A. Gorodtsov and D.S. Lisovenko: On negativity of Poisson's ratio for anisotropic materials. 

DAN, Vol. 429, 5 (2009), pp. 614-616, in Russian. 

[4] R.V. Goldstein, V.A. Gorodtsov and D.S. Lisovenko: Auxetic mechanics of crystalline materials. Mech. Solids. 

Vol. 45, 4 (2010), pp. 529-545. 

[5] V.V. Mokryakov: Application of the multipole method to the problem on two close holes. Mech. Solids. Vol. 42, 

5, (2007), pp. 771-785. 

[6] V.V. Mokryakov: Study of the dependence of effective compliances of a plane with an array of circular holes on 

array parameters. Comp. Continuum Mech. Vol. 3, 3 (2010), pp. 90-101, in Russian. 

[7] N. I. Muskhelishvili: Some Fundamental Problems of Mathematical Elasticity Theory (Nauka, Moscow 1966), 

707 p., in Russian. 

[8] M. P. Savruk: Two-Dimensional Problems of Elasticity for Bodies with Cracks (Naukova Dumka, Kiev 1981), 

323 p, in Russian. 

[9] A. M. Lin'kov: Complex Method of Boundary Integral Equations in Elasticity (Nauka, St. Petersburg 1999), 382 

p., in Russian. 

[10] R.V. Goldstein and P.S. Shushpannikov: Application of the method of multipole expansions in the 3D-elasticity 

problem for a medium with ordered system of spherical pores. ZAMM. V.89,  6 (2009), pp. 504-510. 

 


