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Abstract. The fundamentals of incubation time approach and the sequent structural-continual 

(kinetic) formulation of incubation time based fracture dynamics are outlined. Exploitation of 

structural-continuum approach is illustrated on a range of quasi-static and dynamic fracture 

problems. 

 

Introduction 
Attempting to understand the phenomenon of dynamic material strength the scientific community 

has focused the main efforts on definition of functional strength parameters (dynamic material 

strength and dynamic fracture toughness) by analogy with quasistatic fracture theory. Nowadays, 

such approach looks unviable and inconvenient for engineers due to necessity to define material 

strength functions experimentally for every shape of loading pulse. In 1988 Morozov, Petrov and 

Utkin have proposed a new criterion of crack initiation under high-rate loading [1] extended to 

describe the spalling phenomenon in 1990 [2]. It is based on the notion of incubation time – the 

characteristic time of microfracture (relaxation) processes anticipating the macrofracture event. The 

new incubation time approach become powerful in different problems of fracture dynamics and 

many peculiarities of dynamic strength phenomenon was soon explained (see, e.g., [3]), including 

the nature of dynamic branch (corresponded to extremely short loading pulses) of temporal 

dependence of material strength. The main advantage of incubation time criterion of fracture 

consists in using material constants (depending on no loading rate but on geometrical scale and 

temperature only) that can be defined from static experiments [1-4]. These material parameters are 

the static material strength , the static fracture toughness  and the incubation time of fracture  

(defining as time asymptote of dynamic branch of temporal dependence of strength). Later, the 

incubation time criterion was extended to other dynamic transient processes (listed in Table 1). For 

these problems the generalization of incubation time criterion was proposed [5-8], namely 

 

(1) 

 

Here  is the dynamically changing function characterizing the intensity of external loading (local 

stress, pressure or stress intensity factor depending on physical process under consideration),  

represents its critical value under “slow” (quasi-static) loading, is the incubation time (different for 

distinct physical phenomena) – characteristic time associated with the dynamics of relaxation 

processes preparing the structural transition in continuum, and  is characteristic size of elementary 

fracture cell. Parameter  is responsible for loading rate sensitivity and is defined by ductility [8] (in 

solids) or fluid viscosity [6] (in liquids). Usually it is determined from rather approximation of 

experimental data on dynamic strength but below we will also provide the method of its 

determination from quasistatic experiments. 

 



Spalling fracture [5] 

 – local stress,  

 – static strength,  

  

Crack growth 

initiation [5] 

 – stress intensity factor,  

 – static fracture toughness,  

  

Dynamic yielding [8] 

 – local stress,  

 – static yield limit,  

  

Dynamic melting [7] 

 – local stress,  

 – static melting limit,  

  

Cavitation in fluids [5] 

 – local pressure,  

 – mechanical strength of liquid, 

  

Electrical breakdown 

in insulators [5] 

 – the intensity of electric field, 

 – electric strength,  

  

Table 1. Dynamic transient processes obeyed the incubation time criterion 

 

Let us note that every listed phenomenon demonstrates similar character of temporal dependence of 

strength having two (asymptotic) branches – the dynamic branch (determined by the value of 

incubation time ) and the static one determined by the value ). It particularly means that the 

incubation time criterion (1) degenerates into classical strength criterion  for long-term 

(quasistatic) fracture processes. 

 

Structural-Continual Approach 

So, a variety of different dynamic transient phenomena anticipated by relaxation-type processes 

obey the incubation time criterion that reveals the fundamental role played by incubation time 

regarding to abrupt structural changes in continuum. But incubation time criterion (1) allows an 

integral consideration of relaxation processes and does not provide their continual description at the 

microscale. And in 2008 the structural-continual (temporal) approach based on the notion of 

incubation time was presented [9] providing the kinetic description of abrupt structural changes in 

continuum. Proposed approach operates with the damage function which can be considered in 

fracture problems as instant local microfracture state (this function describes the microfracture 

evolution anticipating the macrofracture event including the processes of nucleation, interaction and 

following coalescence of microfracture – microcracks, microdamage and so on). 

Let us consider a spatially isotropic process of microfracture evolution and fix an arbitrary small 

solid volume. Its mass is denoted as , its volume before deformation is , whereas the total 

volume of microfracture (damage) accumulated inside the chosen portion is . Thus, during the 

damage accumulation process its volume changes as . The change of volume is 

obviously accompanied by variation of local density, described by the mass conservation law (or the 

charge conservation law for electrical breakdown phenomenon). Introducing the damage function as 

, under the most common assumptions on the form of expression for the divergence of 

local velocity of medium particles [4], the mass conservation law takes on form 



 

(2) 

 

The way of definition of the damage function  defines the range of it values: . 

Meanwhile  corresponds to intact (defectless) material, the local state of macroscopic failure is 

referred to  whereas  can be treated as some “suppressed” state. Therefore, the initial 

condition for Eq. 2 and the criterion of macro-failure obviously could be stated as 

   and    
(3) 

 

where  is the time to fracture (time from the moment of loading application till the moment of 

macroscopic fracture). Being supplied with conditions (3) the equation (2) generalizes incubation 

time approach degenerating into (1) in the moment of macrofracture . Unknown 

dimensionless parameters ,  and  in Eq. 2 have to be defined by satisfying to known fracture 

criteria in particular cases. 

 

Definition of the parameters. Long-term quasistatic fracture 
Thus, from correspondence of fracture criterion (3) to incubation time criterion (1) one could 

obtain [4] 

 

(4) 

 

Here  denotes Euler Gamma-function. Both parameters ,  and  could be determined from 

analysis of long-term quasistatic fracture processes (when incubation time  is neglected in 

comparison with the time to fracture , that is  could be supposed).  

 

Creepage. For example, let consider the quasi-static fracture of initially “defectless” material – 

creepage problem (the tension of uniform bar by constant external load  – the specific load per the 

unit of initial cross-sectional area). Then, Eq. 2 yields [4] 

 

(5) 

 

It coincides exactly with Rabotnov creepage equation [10] 

 

(6) 

 

So, structural-continual approach (2-3) generalizes fracture criteria both in static and dynamic cases 

as well as Rabotnov equations (for creepage). The dependences (6) could be easily verified by 

experimental data. In [11] the results of creep experiments made on under different loadings (40, 50, 

60 и 80 ) are reported and the following parameters of Rabotnov equation (6) are calculated 

according to 84 experimental points: . From 

the other hand, for steel 12Х18Н10Т (having a strength limit ) the dependence (6) 

gives  (that is the error is less than 5%). 



 

Fatigue. Also, structural-continual approach parameters could be determined from another 

widespread quasistatic experiments. Applying Eq. 2 to analysis of fatigue crack growth under 

external cyclic loading  having a period  and an amplitude  (see 

Fig. 1), one could obtain the dependence of crack growth rate on the stress intensity range  in the 

form [4] 

 

(7) 

 

 
Fig. 1. Fatigue test arrangement 

 

Comparison of Eq. 7 with Paris equation [12] 

 

(8) 

 

commonly used for description of fatigue crack propagation, yields 

 

(9) 

 

Table 2 contains the fatigue strength parameters and the right part of Eq. 9 calculated on over than 

120 experimental points for different loading amplitudes (from 50 up to 150 MPa) obtained in 

standard fatigue tests (for plates 150х70х2 mm containing central crack 3.4 cm) for aircraft 

aluminum alloys 2024-T3 and 7075-T6 [13-14] (the error of dependence (9) is less than 9%). 

 

     
 

      

      
Table 2. Fatigue strength characteristics of aluminum alloys 2024-T3 and 7075-T6 

 

By the way, we have obtained the remarkable result in damage and fatigue mechanics – the 

analytical relations between the parameters of Rabotnov and Paris equations. Indeed, Eqs. (6) 

and (9) yield 



 

(10) 

 

That is, we have shown that phenomena of static, long-term and dynamic strength are described 

from the common positions by Eq. 2. And even more: the whole strength behavior of material under 

any loading conditions could be predicted having results of static tests (determined static material 

strength  and fracture toughness ) and any of creep, fatigue or dynamic tests. 

 

Dynamic cycling loading 

Exploitation of structural-continuum approach in classical dynamic fracture problems, namely the 

cleavage problem and the problem of dynamic crack initiation, one can find in [4]. In this paper the 

results concerning the propagation of a crack under intensively changing dynamic cycling loading 

(“dynamic fatigue”) are reported. 

 

As a preliminary, let consider a quasibrittle macrocrack under dynamic mode I loading when 

, ,  [15] and Eq. 2 yields 

 

(11) 

 

Denoting  and partially integrating Eq. 11 taking into account the conditions (3) one obtain: 

 

(12) 

 

and the criterion of macrofracture as 

 
(13) 

 

Now we could investigate the problem of microdamage accumulation in the tip of a macrocrack 

under a series of before-threshold loading pulses (when every single pulse is insufficient to cause 

macrofracture in correspondence with criterion (1)). Namely, we will consider a thin plate with 

central crack  under external lateral cyclic load (for the first cycle) 

 

(14) 

 

The shape of stresses (14) is shown at Fig. 3. 

 



 
Fig 2. Temporal shape of external loading 

 

Then the stress intensity factor till the moment of macrofracture (crack advance for the length , see 

Eq. 1) is . Substituting expressions (14) and (13) into Eq. (12) yields 
 

 

(15) 

 

Here  denotes Euler Gamma-function. For most constructional materials (characterized by 

) the parameter  is ranged by  (upper limit corresponds to brittle 

materials with  [3]). Now, the number of load cycles causing macrofracture event (crack 

advance for the length , see Eq. 1) under specified loading amplitude  could be calculated from 

Eqs. 13 and 15: 

 

(16) 

 

Inverse problem (determination of minimal loading amplitude causing macrofracture at specified 

number of cycles) also could be solved. Minimal loading amplitude causing macrofracture  

should correspond to the loading scheme implying the coincidence of the time to fracture and the 

incubation time  that yields , and then 

 

(17) 

 

So, we have managed to describe the process of microdamage accumulation in the tip of a 

macrocrack under a series of before-threshold loading pulses and to determine the moment of 

increment of its half-length up to .  

 

Eq. 16 could be directly utilized to describe the process of further crack propagation. Indeed, at the 

consequent stages (for the crack having a half-length ) the previous considerations remain 

valid and 

 

(18) 

 

Therefore, the dependence between the growth rate of “dynamic fatigue” crack and the amplitude of 

external loading will have a form (analogous to Paris equation (8-9) for quasistatic case): 



 

(19) 

 

And again the Eq. 19 involves just material constants measurable in quasi-static experiments and it 

has not only descriptive but also predictive power of complicated dynamic behavior of materials. 

At Figs. 3 and 4 the results of numerical modeling of the processes of microdamage accumulation in 

the tip of a crack under dynamic pulsed loading and “dynamic fatigue” crack growth are plotted for 

standard fatigue samples (plates 150х70х2 mm containing a central crack 3.4 cm) of aircraft 

aluminum alloy 2024-Т3. 

 

5 10 15 20

n

0.2

0.4

0.6

0.8

1

 
Fig. 3. Microdamage accumulation  under dynamic pulsed loading in 2024-Т3 

for different load cycling periods (from left to right:  

 

Stairs of constant damage function at Fig. 3 correspond to second-half fractions of loading periods 

(when loading is absent). 
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Fig. 4. Crack increment  under dynamic pulsed loading in 2024-Т3 

for different load cycling periods (from left to right: ) 



 

Summary 
Revealing the fundamental role played by microfracture (relaxation) processes anticipating the 

dynamic macrofracture event has motivated the incubation time approach in dynamic fracture 

theory. But incubation time criterion allows an integral consideration of relaxation processes and 

does not provide a continual description of fracture evolution and corresponding incubation 

processes at the microscale. Further development of incubation time concept was made in the 

frameworks of structural-continual approach providing kinetic description of dynamic fracture 

processes. It operates with a function corresponding to instant local microfracture state (the damage 

function) to describe the microfracture evolution (including the processes of nucleation, interaction 

and following coalescence of microfracture – microcracks, microdamage and so on) anticipating the 

macrofracture event. Being generalization of incubation time criterion the correspondent kinetic 

equation involves just material constants measurable in quasi-static experiments and it has not only 

descriptive but also predictive power of complicated dynamic behavior of materials. 

Exploitation of structural-continuum approach is illustrated on a range of quasi-static and dynamic 

fracture problems. By the way, the remarkable result in damage and fatigue mechanics is obtained – 

the analytical relations between the parameters of Rabotnov and Paris equations. It allows to predict 

the whole strength behavior of material under any loading conditions having results of static tests 

(determined static material strength  and fracture toughness ) and any of creep, fatigue or 

dynamic tests. The abilities of proposed approach in description of the propagation of a crack under 

intensively changing dynamic cycling loading (“dynamic fatigue”) are also discussed. 

The main results can be easily generalized to describe sudden structural transitions in other 

problems of solid mechanics: pulsed electrical breakdown in insulators, cavitation in liquids, 

initiation of yielding, melting under high-rate loading, etc. 
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