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Abstract  

This paper presents an advanced model for the simulation of crack propagation in thin walled high-

strength steel sheets using special purpose elements, so called Trefftz-elements (T-elements) for 

crack tip regions. These T-elements are based on shape functions, which are exact solutions to the 

governing differential equations and to inner boundary conditions. This particular choice of shape 

functions results in high resolutions of the stress/strain fields without any refinement of the finite 

element mesh which would increase the computational time drastically, specifically for explicit 

finite element simulations. The T-elements can be combined with standard finite elements, that are 

used for rather uncritical regions, via the Hybrid Trefftz Method (HTM), a coupling formalism 

based on an extended variational principle. Beside this formalism the paper focuses on the 

derivation of particular solutions of the boundary value problem for a straight 2d-crack-problem 

including a Dugdale strip-yield zone. To complete the simulation procedure, a model, describing the 

materials behaviour of fracture toughness must be implemented additionally. This paper uses the 

crack-tip opening displacement (CTOD) as a capable parameter for fracture toughness, specifically 

for the application in automotive high strength steels. The parameterization of the CTOD-based 

model function is realized by fracture mechanical experiments based on single edge notched tension 

specimen. Beyond the parameterization of the materials fracture toughness model experimental 

results, like tensile forces, are used to validate the simulation results. Finally some future 

enhancements, like formulations for a cohesive zone model and crack deflection, are discussed. 

 

Introduction  

Under the aspects of rising demands in vehicle safety and increasing economic pressure, efficient 

methods for the simulation of car crashes play an important role in modern automotive industry. The 

explicit Finite Element Method (FEM) is established as the standard simulation tool in this field of 

engineering. Although this method provides a high prediction quality concerning deformations and 

crash intrusions, strong localized phenomena like failure of joints, crack initiation and propagation 

etc. cannot be described sufficiently without locally fine re-meshing. As a result of the Courant-

Friedrich-Levy criterion for the critical simulation-time-step the elements have to be kept of specific 

minimum sizes to avoid escalating computational times. The mesh dependency of the achievable 

resolution in stress/strain fields as well as the inability to describe continuous crack propagation are 

considerable limitations of the standard FEM for the simulation of crack propagation.  

An alternative to mesh-refinement is the use of special purpose elements, which are better adapted 

to the local conditions at the crack tip than conventional finite elements, based on polynomial shape 

functions. 



This paper suggests the use of so called Trefftz-elements (T-elements) for the crack tip region. In 

contrast to conventional finite elements, a T-element uses particular solutions of the governing 

differential equations, which also satisfy inner boundary conditions [1, 2]. This approach results in 

high resolutions of the stress/strain fields in the vicinity of the crack tip without a mesh-refinement 

in the critical region. Additionally quasi continuous crack growth within the Trefftz-crack-tip-

element can be realized, which is a second advantage compared to traditional crack simulation 

methods like nodal release- or element-elimination-technique.  

After a short introduction to the Hybrid Trefftz Method, the paper presents an analytical derivation 

of particular solutions for a straight 2d-crack-problem including a Dugdale strip-yield zone in a 

linear elastic material. The results of this analytical treatment of the boundary value problem can be 

used to implement a moving local mesh procedure which will be shown later on.  

 

Hybrid Trefftz Method (HTM) 

Let Ω be a general 2d-solution domain containing a sharp crack (see Fig. 1) and two different 

boundary conditions, i.e. a displacement condition on 0 and a force condition on c. To find an 

approximate solution, Ω is divided into two sub-domains, a crack tip region, denoted 1, and a 

rather uncritical domain 1. While 0 is modeled by standard finite elements, the crack tip domain 

1 is modeled by a T-element.  

 

 
Fig.1. Solution domain containing a Trefftz-crack tip element and surrounding standard elements 

 

With the shape functions Uki in 1, which per definition fulfill the governing differential equations 

and a force boundary condition on c, an ansatz for the displacements ui in Cartesian coordinates 

(i=1,2),  
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can be found, where the first term represents a superposition of the homogenous solutions Uki of the 

differential equations and the second term, up, denotes a particular solution, satisfying a possible 

inhomogeneous boundary condition on c. The connection between the two sub-domains is 

accomplished via a displacement frame h along the edges of all adjacent standard elements. 

While C0-continuity holds for the standard elements in 0 it’s not possible to achieve this continuity 

on h. Instead of a strong geometrical boundary condition on h a weaker form can be found via 

an extension of the first variation of the potential energy [3] by an additional term, 
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where i are the analytic expressions for the traction densities in 1, iu  are the polynomial shape 

functions of the adjacent standard elements and t is the plate thickness. The element stiffness matrix 

and the element nodal force vector, which does not vanish if there are external forces acting on i, 

can be obtained by minimization of the extended potential energy. 

 

Analytic Trefftz-solutions  
For linear elastic materials, the governing differential equations are the Navier-Cauchy equations. 

For plane problems in Cartesian coordinates xi (i=1,2) and under the assumption of absent volume 

forces they take the form 
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where r=1,2,  and  are the Lame’ constants. The equations can be formulated in the Complex 

plane with the relations 
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for the coordinates and displacements, respectively, and a complex representation of (3),  
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can be specified. It can be shown [4, 5, 6] that the general solution for the displacement- and stress-

fields are related to two complex potential functions, (z) and (z), and their complex derivatives 

according to 
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and 
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where κ=(3-ν)/(1+ν) for plane stress. (z) and (z) are holomorphic in 1, and the resulting 

complex displacements and stresses must be single valued. To obtain a set of particular solutions 

according to Eq. 1, the force boundary condition on the edges of the crack must be fulfilled. 

 

The Dugdale model. In [7, 8] a strip yield zone was proposed for a through crack in an infinite plate 

for a non-hardening material in plane stress. The elastic-plastic behavior is approximated by the 



superposition of the linear elastic solution for traction free crack edges and a solution for a closure 

stress with a magnitude of the yield stress σy at the crack tip such, that the stress singularity of the 

linear elastic near field solution is removed. Fig. 2 shows a Dugdale-like configuration with a crack 

from - to +rD on the x-axes, where rD is the size of the Dugdale-zone, i.e. for 0<x< rD a constant 

crack closing traction density yi    acts while for x0 the crack is unloaded. 

 
Fig.2. Conformal Map of the solution domain  

To apply this condition, the physical solution domain in the z-plane is considered as a map from the 

complex upper half of the -plane, see Fig. 2, via 
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such, that the Dugdale-zone is now located in the interval (-1,1) on the -axes. By integration of the 

traction densities along the crack with arbitrary lower and upper integration limits, a simpler form of 

the boundary condition, 
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is obtained. Using the Schwarz reflection principle for  and f, an ansatz for,  
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can be found. Substituting of Eq. 12 in Eq. 11 results in  
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which is used for the determination of . While for the homogeneous part of Eq. 13 a power series 

can be used, for the inhomogeneous part a more specific ansatz is chosen by means of complex base 

functions  

 

    2ˆ 1
n

nW      . (14) 

In summary, the ansatz for the complex potential is 
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The functions ˆ ( )nW   form a complete set of base functions in the considered interval (-1, 1) on the 

ξ-axis, which is used to fulfill the force boundary condition within this interval. For the constant 

traction density a closed form,  
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of the inhomogeneous part p can be found. 

 
(a) (b) 

 

Fig.3. (a) Real part of the complex potential p. (b) Imaginary part of the complex potential p 

In Fig. 3a and Fig. 3b the real- and the imaginary- part of p, Eq. 16, are shown. It can be seen, that 

p has a branch cut in the interval (-1, 1) on the ξ-axes. This branch cut exactly satisfies the 

boundary condition, given in Eq. 13, and p tends to zero for |ζ|→∞. Due to this characteristic, the 

choice of this particular potential p is ideally suited for the T-element formulation of the Dugdale 

crack problem. Mapping of the ansatz , Eq. 15, to the z-plane by Eq. 10 can be used to derive an 

expression for the displacement-field, according to Eq. 1, with Eq.7 and Eq. 5.  

 

Length of the Dugdale-zone rD. In order to remove the singularity in the stress-field at the crack 

tip, which results from the homogeneous part of , a relation between the coefficient A1 and the 

length of the Dugdale-zone rD,  
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is found by calculating the limit of the von Mises-stress for z → rD. It should be noted, that for a 

pure Mode I condition, the complex coefficient A1 becomes negative imaginary, resulting in a 

positive real value for rD. For Mixed Mode conditions, Eq. 17 is also valid, but rD becomes complex. 

Because of the relation between A1 and rD, which determines the conformal map, Eq. 10, the 

element-stiffness matrix and the element nodal force vector can only be calculated iteratively.  

 

Results for a stationary crack  

Fig 3a,b show von Mises stresses for a stationary crack in a single edge notched tension specimen 

under Mode I loading. While Fig. 3a is calculated with a very fine standard element mesh (edge 

length of the elements 0.1mm), Fig 3b shows the result of a calculation via HTM using a T-element 

with analytic shape functions and a coarse residual mesh with 5mm edge lengths.  

 
 (a) (b) 

 

Fig.3. Examples for the von Mises Stress under Mode I loading calculated with: (a) fine 

standard finite element-mesh and (b) a T-element  

 

The results show a good accordance in the relevant region in front of the physical crack tip 

(Dugdale-zone). Due to the high resolution of the analytic displacement- and stress-fields, they can 

be used to evaluate as fracture mechanical propagation criteria. 

 

Simulation of Crack Propagation 

A simulation of the crack propagation based on HTM can be realized by a change of the crack tip 

position in arbitrary small steps inside the T-elements domain. In each simulation step a crack 

driving force is evaluated and compared against an empirical model function for the crack growth 

resistance obtained from experimental data. If the simulated value exceeds that of the empirical 

model function, the crack is extended by a predefined small step and the criterion is evaluated once 

again. This procedure is repeated until the simulated value is lower than the empirical one. 

Subsequently the next external load step can be computed. The T-element usually replaces more 

than one standard element. Therefore the crack can grow for some distances inside the element. If 

the crack tip approaches the element boundary, the T-element is re-positioned in propagation 

direction, replacing the corresponding elements in front of the T-element. The occurring gaps in the 

back of the re-positioned T-element can be refilled with standard elements.  



 

Crack tip opening displacement (CTOD). This paper uses the CTOD as a capable parameter to 

simulate the crack growth. According to different experimental determination methods, various 

definitions for CTOD exist [9]. This paper uses the definition of CTOD at the end of the Dugdale-

zone [10], which can be evaluated directly by the Trefftz-displacement solution (see Fig. 2 and Fig. 

4).  

 
Fig.4. Vertically zoomed contour of the crack edges in the crack tip region, calculated via HTM  

 

Fracture mechanical testing. The materials fracture toughness is modeled by an empirical CTOD-

∆a model function,  
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where ∆a is the crack extension and c1, c2, c3 are constants, which obtained from quasi-static 

displacement controlled tensile tests performed on fatigue pre-cracked single edge notched specimen 

(SENT-tests). Since direct methods to determine the materials CTOD-∆a-curve are rather 

cumbersome, an alternative, based on CTOD-δ5 [10], is realized. The measured CTOD-δ5-∆a-curve 

can be used to control the crack propagation for an HTM-simulation to obtain the CTOD-∆a-curve 

as described above. 

 

Validation. Fig. 5b shows the simulated load-crack-extension-curve (F-∆a-curves) compared 

against experimental data. 

 

 
Fig.5 Validation of the simulation results based experimental load-crack extension curves for 

quasi static tensile tests 

 



It is found, that the simulated results for the tensile forces as well as the crack length for which 

instability occurs are in good accordance with experimental data. 

 

Conclusion 

This paper presents a simulation method for 2d crack propagation in high strength steel sheets using 

a Hybrid-Trefftz-element. The method provides a high resolution of the stress- and displacement 

fields in the vicinity of the crack tip by means of particular solutions of the governing differential 

equations and inner boundary conditions. These analytic solutions for a crack-problem with a 

Dugdale-strip-yield-zone can be derived, introducing a specific function base for p, the 

inhomogeneous part of the complex potential to satisfy the strip yield force boundary condition.  

Furthermore the paper presents a complete crack propagation algorithm, based on the Crack tip 

opening displacement (CTOD) criterion. The materials fracture toughness is included by means of 

an empirical model function for the CTOD-∆a-curve. The simulation results are validated against 

experimental data via load-crack-extension curves and show a good accordance.  

The introduced function base for p enables further enhancements like the implementation of 

cohesive zone models for hardening materials or the deflection of cracks using Schwarz-Christoffel 

mapping.  
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