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Abstract 

It is known that shakedown analysis is the extension of the plastic limit analysis for the structures 

under variable loads, and provides the safer criterion. A shakedown reduced kinematic formulation 

has been constructed for applications, which implies the plastic limit one as a limitting case. The 

present paper concerns, in particular, with thin elastic - plastic hollow disks under plane stress 

conditions subject to thermomechanical loading. The system of loading consists of a variable 

uniform pressure applied over the inner radius of the disk and a uniform temperature field varying 

with the time, while the outer radius of the disk is fixed. Due to the system of loading applied and 

the constraints imposed the problem is axisymmetric. Semianalytrical application of the reduced 

shakedown kinematic theorem produces two possible incremental and alternating plasticity collapse 

modes. Another plastic limit mode is when the plastic deformation occurs over entire disk. The 

collapse curve in parametric load-temperature space for the disk is taken as the lower envelope of 

those modes. 

1. INTRODUCTION 

It is known that the application of computational models to plane stress problems leads to specific 

difficulties non-existent in other formulations [1]. In particular, solutions may not exist for a certain 

set of input parameters or may be singular. Analytic solutions are very useful for studying such 

features of the model. Also, analytic solutions should be used to verify numerical codes. 

Determination of plastic limit states for thin plates and disks subjected to various kinds of loads has 

been pursued in many works, see e.g. [2-5]. In those studies one-parameter loading has been 

considered. Some problems related to the onset of plastic limit state of structures in the case of 

multi-parameter loading was studied in [6]. Thermal loading of thin disks under various kinds of 

constraints was examined in [7-11]. Various rigid-plastic and elasto-plastic solutions for thin plates 

with cylindrical hole have been provided in [12-13]. In [14] a semi-analytical solution has been 

constructed for plastic limit state of hollow disk under combined actions of temperature field and 

pressure on the internal contour (the external contour of the disk is presumed to be fixed). Various 

possible collapse modes have been analyzed. The result obtained would be used to treat a possible 

incremental collapse mode as we treat the more complicated shakedown problem for the structure in 

this work. Shakedown analysis is the extension of the plastic limit analysis for the structures under 

variable loads, and provides the safer criterion [15-19]. In [17-19] we produced a shakedown 

reduced kinematic formulation, which has been used successfully to solve various practical 

shakedown problem. In this work the semi-analytical approach would be applied to solve the 

problem for the disks, in particular, those examined in [14].  
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2. SHAKEDOWN AND PLASTIC LIMITS OF STRUCTURES 

An elastic-plastic structure under given loading history, after a finite amount of initial plastic 

deformation may eventually shake down to some state, from which it subsequently responds 

elastically to the external agencies. Otherwise, the structure is considered as having failed, because 

of continuing plastic deformation. 

Let  ,te
xσ  denote the fictitious stress response of the body V  to external agencies over a period of 

time   T,0t,V x  under the assumption of perfectly elastic behaviour. The actions of all kinds 

of external agencies upon V  can be expressed explicitly through 
e

σ . At every point Vx , the 

elastic stress response  ,te
xσ  is confined to a bounded time-independent local loading domain xL . 

As a field over V ,  ,te
xσ  belongs to the time-independent global loading domain L : 

    ,T0V,t,Lt,|L x

ee  xxσσ     (1) 

In the spirit of classical shakedown analysis, the bounded loading domain L , instead of a particular 

loading history, is given a priori. Shakedown of a body in L  means it shakes down for all possible 

loading histories   L,te xσ . 

Let sk  denote the shakedown safety factor: at 1ks  , the structure will shake down, while it will 

not at 1ks  , and 1ks   defines the boundary of the shakedown domain. Following the kinematic 

upper bound approach of [5,6,7], we establish that: 
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where where C  is the set of strain fields that are both deviatoric and compatible on V ; 

  pp :D εσ  is the dissipation function determined by the yield stress Y  and the respective 

yield criterion, in particular, for a Mises material we have: 

    2/1pp

Y

p :
3

2
D εεε        (5) 

Not that the deviatoric plastic strain 
p
ε  in (4), in contrary to that in (3), is not required to be a 

compatible field on V . The compatible field 
p
ε  in (3) represents the incremental plastic strain 

increment over a cycle. I  represents the incremental collapse mode, and A - the alternating 

plasticity collapse one. 

Through the plastic limit safety factor pk , the plastic limit kinematic theorem can also be stated as: 
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which can be considered as a limiting case of the shakedown analysis (1)- (4) [3]. In (6),  xσ
e

 is 

the fictitious elastic field, or any equilibrated stress field at collapse; 
p
ε  is the plastic strain rate 

field at collapse. For quasistatic loading processes, one always has 
1

pkI  , hence 
1

p
1

s kk    and 

ps kk  , which indicates that the shakedown criterion is safer than the plastic limit one for the 

processes. 

3. SHAKEDOWN LIMIT FOR CIRCULAR DISKS 

Consider an axis-symmetric problem for thin circular hollow disk of internal and external radii 0r  

and 0R , respectively, subject to some external mechanical and thermal fields, varying within certain 

limits. The elastic stress field has three principal components 
e
r , 

e
 , and 0e

z  , in the 

cylindrical system of coordinates  z,,r  . The plastic strain (rate) field also has three principal 

components 
e

r , 
e

 , and 
e

z , where 
pp

r

p

z    from the plastic incompressibility. The 

shakedown formulation for that plane stress problem can be made into the particular form: 
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where 
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Presume the disk is under variable quasistatic mechanical and thermal fields. In particular, the disk 

is subjected to variable pressure 
 PP0 on the internal contour ( 0rr  ), in variable a 

homogeneous temperature increment 
 TT0  (from the zero reference environment 

temperature, at which the unloaded disk is free of stresses). The external contour of the disk 

( 0Rr  ) is fixed (see Fig.1). Introduce the dimensionless variables: 

Y/Pp  , 0R/r , 000 R/r , 
Y

ET




  ,   (10) 

where   and E  are the thermal expansion coefficient and elastic Young modulus. The 

thermoelastic stress solution for the disk is: 
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   0,pp0,10  

where   is Poinsson ratio. 

 

Fig.1. A circular disk 

In shakedown analysis, (11) is used to represent the actions of external agencies over the disk in the 

dimensionless expressions of the incremental and alternating plasticity collapse modes: 
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Equation 1I   defines the incremental collapse mode in the loading space  p, , while 1A  - the 

incremental collapse mode. The lower envelope of them defines the shakedown boundary 1ks  , 

under which the disk is safe. 

In the mean time, the respective plastic limit of the disk is determined by: 
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Equation 1kp   defines the plastic limit boundary in the loading space  p, , under which the disk 

is safe.  

An analytical solution for the instant of plastic yielding over the whole of the disk has been offered 

in [14]. The total kinematic field of the problem at the instant has been found as: 

     m3exp1         
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where   is a proportional coefficient,   depends on   as: 
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0  and m  can be found from: 

   3sin21cos3,p
2

3
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Solution for the alternating plasticity collapse mode (13) can be found directly, using (11). Problems 

(12) and (14) are nonlinear optimization problems, and in the general case should be solved 

numerically. With appropriate trial kinematic collapse fields, one may find from them (upper bound) 

estimates for the respective collapse loads. A possible incremental collapse mode and plastic limit 

one can be found by substituting a localized compatible plastic strain trial field (    is Dirac delta 

function): 

  1c,c 0

p

z

p

r        (18) 

into (12) and (14), and optimize them over the variable c (called the collapse mode I). The 

alternating plasticity collapse mode is found directly from (13). The plastic limit state (15)-(17) is 

called here the collapse mode II.  

For numerical illustrations, we take 3.0;5.00   . In Fig. 2, the incremental collapse and 

plastic limit curve 1kI 1
p  

 using the trial field (18) (mode I- solid line), together with the plastic 

limit curve from [14] (mode II - doted line), are projected in Fig. 2. The alternating plasticity 

collapse curve 1A   is also given for three cases: 

    (a) ;0,pp0     

    (b) ;0,ppp1.0     

     (c)    1.0,0 pp  

Shakedown safety domain should lie under all those curves: The collapse modes I and II, and one of 

the alternating plasticity collapse curves (a),(b), or (c), in the respective cases. 



 

Fig.2. Collapse curves 
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