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Abstract. This paper provides a tool for numerical modelling of crack problems with incomplete 

boundary conditions formulated in terms of principal directions given on the crack surfaces. 

Continuity of tractions across the crack contour is also assumed. The problem is reduced to a system 

of singular integral equations that can be fully homogenous; therefore the application of standard 

numerical methods does not allow one to obtain non-trivial solutions. It is proposed to apply the 

Carleman-Vekua regularization to transform the problem to a system of non-homogeneous 

Fredholm equations of the second kind. Numerical solution of the latter can be built by the method 

of mechanical quadratures. Solvability of the problem is also discussed and illustrated for the case of 

a single crack. 

Introduction  
The development of effective numerical approaches for stress reconstruction in plane elastic media 

with cracks from incomplete boundary data is the main focus of this study. 

Fracture in geological media occurs under compressive loads and it is quite often that the crack 

(discontinuity) surfaces stay in partial contact during the fracture development. This fact presents 

sufficient difficulties in formulations of well posed boundary value problems (BVP) due to absence 

of reliable information about stress/displacement distributions along the contact zones. Therefore, it 

is important to study alternative formulations of BVP that include supplementary information on 

stress indicators on the boundary as well as inside the domain considered. Examples of such 

formulations include: continuous boundary data on stress/displacement orientations, and/or discrete 

field measurements of these characteristics. The boundary conditions (BC) of such type are 

incomplete in the sense that solutions of such problems are not unique. It has been demonstrated in 

[1] that the BVP formulated in terms of principal directions of the plain stress tensor and their 

normal derivative on a closed contour may have finite number of solutions or be unsolvable 

depending on the behaviour of the boundary data. Similar conclusions have been found for the cases 

when orientations of the traction and displacement vectors are used as BC [2]. The solvability of 

BVP for an open contour has also been considered for the special case of incomplete BC in [3]. 

Despite the progress in investigation of the solvability of the BVP with incomplete BC no numerical 

approaches for has been suggested to address the case of open contours (specific for the crack 

problems). The present study intends to fill this gap.  

Integral equations for collinear shear cracks. 

Preliminaries. The 2D crack problems in elastic plane are formulated in terms of Muskhelishvili 

approach [4]. Thus, the Kolosov’s formulas provide the following relationships between the stress 

components xx, yy, xy  and the displacement vector (ux,uy) and two holomorphic functions (z) 

and (z) (and their derivatives) of the complex variable z=x+iy 
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Here =3-4 for plane strain, =(3- (1+ for plane stress, G is the shear modulus. The harmonic 

function expressing the mean stress and the complex-valued stress deviator function are further 

denoted as  
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The crack (a system of cracks) is modelled by the discontinuity of the displacements along the crack 

contour, . For this reason one can introduce a complex-valued function that characterizes the 

generalized crack opening displacements 

    ttiutiututuGtg yyxx ,)()()()(2)(  (3) 

where )()( tiutu yx
  is the complex displacement vector of  on the upper/lower surface of the cracks.  

The stress vector, N+iT, on  is expressed via the boundary values of the P() and D() are the 

boundary values of the stress functions in Eq. 2 as follows 
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Here )(  and is the angle between the tangent to the contour and the real axis. 

The complex potentials can be expressed via the function g(t), which results in the following 

expressions for the stress functions that reflect the stress state of the infinite plate generated by the 

crack (provided that the tractions across the crack are continuous) 
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The boundary values of these functions are found as follows 
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In should be noted that the second integral in the right-hand side of Eq. 8 in not singular. 

By superposition of the stress fields created by the cracks and the applied stress field one can present 

the equilibrium equation of the cracks contour from Eq. 4 in the form 

  ),()())(2exp()( pDiP crcr  (9) 

where the right hand side of this equation presents the loads applied to the crack surfaces (including 

the loads at infinity taken with the opposite sign).These loads are continuous across the contour. 



Substitution of Eq. 7 and Eq. 8 into Eq. 9 leads to the standard singular integral equation (SIE) for 

crack systems, see e.g. [5]. The unknown density of crack opening displacements should satisfy the 

condition of single-valuedness of the displacements that for non-intersecting cracks has the form 
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where k represent particular crack contours. 

Solution of such SIE can be found in an analytical form for some simple cases of contours, in 

particular, for collinear cracks of a circular crack. For general geometries, the SIE can be solved 

numerically by a number of methods.  

In should be noted that the SIE followed from Eq. 9 has a unique solution provided that the 

conditions of the single-uniqueness of displacements are satisfied. Therefore the choice of a 

numerical method is not a vital issue; usually it is convenient to discretize the SIE by applying a 

proper quadrature formula and to apply the collocation method to reduce it to a linear system of 

algebraic equations (e.g., BEM method [6] or the method of mechanical quadratures [5]). Other 

approaches are based on the method of moments or orthogonal polynomials. All these methods are 

applicable for non-homogeneous SIEs possessing unique solutions. However the uniqueness is 

violated if one considers the problem formulated in terms of principal directions [1]. Moreover, the 

system of SIE in this case is homogeneous, which restricts the application of direct numerical 

methods as those mentioned above. It has been recently proposed in [7] to apply the Carleman-

Vekua regularization [8] to the SIE formulated on a closed contour, which results in a Fredholm 

equation of the second kind. The latter contain a non-homogeneous right hand side generated by the 

polynomials of the order determined from the solution of the corresponding Riemann problem (see 

[8] for detail). Here it is proposed to generalize this approach for the case of open contours. 

Problem formulation. Let the entire contour  consist of the union of n non-interesting intervals 

that can be separated into two groups of n1 intervals united in 1 and n2 intervals as 2, i.e 
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The boundary conditions of the problem are formulated as follows: there is no jump of normal 

displacements, uy(x,y), across ; shear stresses, T(x), are known on 1  and the principal directions,  

specified by the angle (x,0+), are known on 2, i.e. 

 xxuxu yy ,0)0,()0,(  (12) 
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Here =-2 is the argument of the complex-valued stress deviator function. 

Due to Eq. 12 the complex-valued function g(t) in Eq. 3 becomes real-valued and its contour 

derivative can be presented in the form 
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The boundary values of the stress functions in Eq. 7-8 assume the form 
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Then the system of equations derived from Eq 13 and Eq 14 assume the form 
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For completeness, this system is complemented by the conditions given by Eq. 10. 

Solvability of the system. The system of SIE is further reduced to a single SIE by solving the first 

equation of the system with respect to the unknown function 1(t) by using the inversion formulas 

for open contours [8]. This solution can be presented in the form 
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where Pn1-1(t) is an arbitrary polynomial of the degree (n1-1) and the function R(z) is 
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It should be noted that the polynomial term in Eq 19 should vanish due to the conditions of single 

valuedness specified by Eq. 10, which is evident from the evaluation of the integrals of the form 
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Then the expression for the unknown function 1(t) can be transformed to the form  
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Substitution of Eq. 22 into the second formula in Eq. 18 results in the following SIE 
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where the following notations are introduced 
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The solvability of Eq. 23 depends on the index of the corresponding Riemann BVP. It has been 

shown [7] that the total index of the problem for M cracks is equal to 2+M, where 2 is the 

difference of the number of revolutions of the principal directions counterclockwise and clockwise 

that in the considered can be determined as follows 
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For solvability the total index must not be negative. Then, in general, the number of free parameters 

for the Riemann problem should be equal to 2+n2+1, however due to the presence of n2 conditions 

of single valuedness of the displacements (n1 conditions have already been taken into account in 

transformation of Eq. 19 to Eq. 22) the total number of free parameters is reduced to 2+1, i.e. the 

solution of the characteristic SIE contains an arbitrary polynomial of the 2 degree, provided that 

2 0 (otherwise the problem has no solutions). We further use this fact to build up the numerical 

approach for solving Eq. 23. 

Solution for a single crack. For illustration, let us consider the case of a single crack with the given 

principal directions on the crack surfaces. In this case 1=0 and one can select 2=(-1,1). Then 

1(t)=0, 1(t)=(t) and the system (Eq. 18) is reduced to a single homogeneous SIE 
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with the condition 
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It is evident that the application of any direct numerical approach to the problem given by Eq. 26-27 

will result in the trivial solution. However, the problem can have non-trivial solutions depending on 

the conditions imposed on the boundary values of (x). Since Eq. 26 presents itself as the dominant 

SIE for an open contour, its solution is found in accordance with the following formula [8] 
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One of the arbitrary real coefficients Ck can be excluded to satisfy Eq. 27. Therefore the total 

number of linearly independent solutions is 2. 

Let us, for example, assume that cos((x))=x, then Eq. 26 yields 
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Then evaluating the integral in Eq. 28  
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and taking into account that 2=0 one obtains 
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From Eq. 27 it is evident that C0=0. Thus the solution is 
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This solution present the case when the crack surfaces are loaded by a constant shear stresses T0, i.e. 

when the stress deviator is as follows 
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The constant C1, however, cannot be identified because no data on the stress magnitudes have been 

specified in the boundary conditions. 

Numerical approach. 

It is evident from the example considered for a single crack that the application of the Carleman-

Vekua regularization [8] to the second SIE in the system specified in Eq. 18 is capable to take into 

account all homogeneous solutions. The regularization of the non-homogeneous SIE in Eq. 18, in 

principal, is not necessary because this equation processes a unique solution (provided that the 

conditions of single-uniqueness of the displacements are satisfied). However the regularization of 

the first equation reduces the system to a single SIE of the form presented by Eq. 23. Thus, the 

computational cost of calculating additional iterative integrals can partly be mitigated by the smaller 

dimension of a system of the linear algebraic equations (SLAE) resulting from the single SIE. Let us 

further consider the case of discretisation of Eq. 23 and it reduction to a SLAE.  

Firstly one can rewrite Eq. 23 in the form of a new system of n2 SIE for each crack contour 
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 and mj is Kronecker delta.

The conditions of single-valuedness take the form 
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The application of the Carleman-Vekua regularization converts the system of Eq. 34 into the 

following system of Fredholm equations (see [8] for the proof of regularity of the kernels in the 

obtained system) 
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Here 2j are particular indices for the j-contour determined in the same way as in the considered 

case of a single crack (previous section), Cj,k are unknown constants.  

Further the method of mechanical quadrature [5] is applied to the system in Eq. 36 and to Eq. 35, 

which leads to a SLAE of the form  

homoload GCGAM T  (37) 

Here the matrix A is quadratic (n2xN)x(n2xN), where N is the number of roots of the Chebyshev 

polynomials used in quadrature, the vector M consists of the set of sought values of the unknown 

functions ))(()()(0
jjjj cttdtt  at nodal points, the vector Gload addresses the known loads 

applied while the matrix Ghomo is the set of the values of the eigen-functions k
jj xxZx )()(cos  of the 

dominant SIE at collocation points, C ={Cj,k} is the matrix of arbitrary coefficients.  

The solution of the SLAE is built as the sum of the solution responsible for the applied loads and the 

homogeneous solutions. The latter can be presented via the set of 2 basis vectors (1,0,….0), 

(0,1,…0),…(0,0,…1). Therefore the total solution can be presented in the following symbolic form 

homoload GACGAM 11   T  (38) 

The mode II stress intensity factors at the crack tips can be found by interpolation to obtain the end 

values of )(0 tj  (see [5] for detail). 

Concluding remarks.  

The paper suggests a numerical approach for solving singular integral equations for collinear cracks 

with the boundary conditions posed in terms of the principal directions given on the crack surfaces. 

Since the SIE of the problem is homogeneous its solution cannot be obtained by direct application of 

well-established numerical methods, which necessitates regularization. The latter is performed by 

using the analytical solution of the dominant SIE (the Carleman-Vekua regularization, [8]), which 

allows one to transform the original system of SIE into a system of Fredholm equations of the 

second kind. As the result of this transformation, the new system becomes non-homogeneous with 

the right hand side dependent of the eigen-functions of the dominant SIE. This allows one to build 

numerically a non-trivial solution of the problem by superposition of the solutions of the Fredholm 

equations with the full set of the eigen-functions in the right hand side.  
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