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Abstract. The paper is devoted to the fatigue growing crack problems in damaged media and 

mutual effects of damage on the evolution of the stress-strain state near the crack tip and vice versa. 

The new asymptotic study of fatigue crack growth in an isotropic linear elastic material based on the 

continuum damage mechanics in the coupled (elasticity – damage) formulation under plane strain 

and plane stress conditions is realized. The numerical solution of the two-point boundary value 

problem for non-linear ordinary differential equations to which the fatigue crack growing problem 

reduces is obtained. The new analytical presentation of stress, strain and continuity fields both for 

plane strain and plane stress conditions is given. The results obtained differ from Zhao and Zhang's 

solution where the original formulation of the problem for plane stress conditions has been 

proposed. The analytical solution of the nonlinear eigenvalue problem arising from the fatigue crack 

growth problem in a damaged medium in coupled formulation is justified by the perturbation theory 

technique used. It is shown that the perturbation method allows to find the analytical formula 

expressing the eigenvalue as the function of parameters of the damage evolution law.  

Introduction. Accurate description of crack-tip stress and deformation fields is the basis to establish 

a proper macroscopic fracture criterion and predict the failure of cracked structures. The interest in 

the current paper is to reveal the asymptotic crack-tip fields in power-law material and (or) in a 

damaged material with power law damage evolution equation. Nowadays fracture process is 

considered as a multiscale process. It is necessary to distinguish the fracture process at macro-, 

meso- and microscopic level and to include into consideration damage accumulation at different 

levels either. Developing multiscale fracture and damage models implies hierarchy of stress 

singularities: strong and weak singularities reflecting fracture and damage accumulation at different 

scales. Stress singularities can be expressed as r  with   being the order of the singularity. To 

obtain reasonable description of fracture process an analytical solution ),( mn   where mn,  are 

material parameters of stress-strain relations and damage evolution law for all eigenvalues similar to 

the HRR stress field with theoretically known formula )1/(1  n is needed. 

Asymptotic study of fatigue crack growth in a damaged medium. Consider a fatigue growing 

crack lying on the x-axis with the coordinates origin located at the moving crack tip as shown in Fig. 

1. The constitutive equations are formulated in the framework of continuum damage mechanics as 
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Fig.1. Geometry of a fatigue crack in a damaged medium 

where E  and   are the Young’s modulus and Poisson’s ratio, respectively, and the continuity 

variable evolutes according to 
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where N  is the number of cycles, ,,, mnc  and th  are material constants. 

The original statement of the problem is proposed in [1]. The asymptotic solution of fatigue crack 

growth based on continuum damage mechanics given by Jin Zhao and Xing Zhang has aroused 

considerable interest and is presented in books [2, 3] in details. However the results obtained in [1] 

do not agree with the conclusions formulated in other works devoted to crack tip problems in 

materials with the damage coupled stress-strain relations [3, 4]. Recent interest in the development 

of multiscale fracture models has motivates extension of the asymptotic study of fatigue crack 

growth based on damage mechanics. Following [1] the problem of plane stress and plane strain for 

mode I is considered under small-scale damage conditions and the equilibrium equations are 

satisfied by introducing the Airy stress function  

).(),( 2   frrF            (3) 

The stress components near a crack tip are separable and can be expressed as 

      ),(~,),(~,),(~,  








rrrrrr rrrrrr   

where        )('1~),(12~),(")(2~   ffff rrr  . 

The continuity field around the crack tip is presented in the form 

)(),(  grr  .          (4) 

The compatibility equation, the kinetic law (2) and asymptotic expansions (3) and (4) result in the 

following nonlinear eigenvalue problem  

    0''''''2 1321  fGebfEbfbGfEf IV       (5) 

for plane stress conditions; 

    0)1/(''''''2 1321  fGsdfEdfdGfEf IV       (6) 

for plane strain conditions; 
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  )1/())(1()1)(()1(2 311   ssd , 

  )1/(2)1(2 12   sd , 

)1/(])1)[(( 123   ssd ,   )1/()1(  nm  

  2/1222 ~3~~~~~
  rrrrre   (for plane stress) 

   2/1
22 ~4~~

2

3~
  rrre   (for plane strain) 

with boundary conditions 

0)0(',0)0(''',0)0(',1)0(  gfff ,      (8) 

0)(',0)(   ff .         (9) 

Thus, the nonlinear eigenvalue problems (5), (7) and (6), (7) with boundary conditions (8), (9) are 

formulated. It can be shown [1-4] that it is necessary to modify the traction free boundary 

conditions. The careful numerical analysis of the problem formulated above shows that it is 

impossible to find the eigenvalue   such that the boundary traction-free condition on the crack face 

is satisfied. It turns out that the function )(g  from some value of polar angle  becomes negative 

what emphatically it is not. The negative values )(g  of contradict to the physical sense of the 

continuity parameter. To eliminate this difficulty the modified statement of the problem is proposed. 

Whereupon, a set of favourable boundary conditions are given as  

0)(,0)(',0)(  ddd gff         (10) 

In [1] the two-point boundary value (5), (7) with boundary (10) is studied. A series of numerical 

results realized in [1] show the dependence of eigenvalue   on the values of material parameters 

nm, . In this contribution a series of numerical experiments for plane stress and plane strain 

conditions are fulfilled. Thorough analysis of the nonlinear eigenvalue problems considered allows 

to find the analytical presentation of the angular distributions of the stress component and the 

continuity parameter determined by the analytical solution of (5), (7), (10) and (6), (7), (10)  
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The asymptotic fields in the vicinity of the fatigue crack have the form 
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The stress and continuity distribution are valid for plane stress and plane strain conditions. The 

results are presented in Fig.2-4. 

Perturbation theory method and its application for solving the nonlinear eigenvalue problems. 
The exact solution of stresses and continuity is found on the basis of numerical analysis of the 

boundary value problems for nonlinear ordinary differential equations. This raises the question of 

whether Eq. (11) can be determined in a general case? It turns out that the perturbation method 

technique can be easily applied for nonlinear eigenvalue problems and hence it is possible to obtain 

the eigenvalues of nonlinear eigenvalue problem in the closed form.  



 

   

Fig.2. Normalized angular distributions of stress and angular continuity distribution for 

2,2  mn  

     
 

Fig. 3. Normalized angular distributions of stress and angular continuity distribution for 

2,4  mn  

           



Fig. 4. Normalized angular distributions of stress and angular continuity distribution for 

2,7  mn  

One can introduce a small parameter  

0             (12) 

reflecting nonlinearity of the problem: 0  is eigenvalue of linear “undisturbed” problem when 

1,1  mn  are valid;   is eigenvalue of nonlinear “disturbed” problem when 1,1  mn . 

We seek a third-order uniform expansion of expanding the angular functions )(f , )(g  and 

parameters nm, : 
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Introducing asymptotic expansions (12) and (13) into Eqs. (5), (6) and (7) and collecting terms of 

equal power in the small parameter the set of linear differential equations is obtained.  

The zeroth-order problem for plane strain conditions has the form 
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The solution of Eqs. (14), (15) should satisfy the symmetry conditions 
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the regularity requirement  
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and the traction free condition at d   
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The solution of the boundary value problem (14) – (18) can be presented in the form 
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The first-order boundary value problem can be formulated as 
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Eqs. (20), (21) comprise the system of two linear inhomogeneous equations with respect to 

functions )(1 f  and )(1 g . Since the homogeneous problem (14)-(18) has a nontrivial solution, the 

inhomogeneous problem (20), (21) has a solution only if a solvability conditions is satisfied. The 

solvability condition can be formulated by using a solution of the self-adjoint problem [6]: 
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k  are the solution of the adjoint problem corresponding to (20), (21): 
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The boundary conditions of the adjoint problem are 
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The solvability condition (22) enables to obtain the first perturbation of mn  : 111 mn . The 

analytical solution of the boundary value problem (20), (21) can be found 
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The second-order and the third problems have been either analyzed. The solvability conditions for 

each of the inhomogeneous system have been considered and studied. The solvability condition for 

the problem with respect to functions )(2 f  and )(2 g  allows to find 122 mn . The analytical 

solution for the angular function )(2 f  and )(2 g  have the following form 
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Analysis of the solvability condition for the boundary value problem for the function )(3 f  and 

)(3 g  results in the three-term asymptotic expansion of the difference mn  : 
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Using the asymptotic series of the Poincare type (23) (the straightforward expasion) one can 

construct the Pade approximation 
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Eliminating by the use of Eq. (12) the small parameter from the equation obtained one can find the 

final formula 
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Analysis of the asymptotic expansion for the function )(f  and )(g  enables to find the exact 

solution of the nonlinear eigenvalue problem 
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Hence, the perturbation theory technique permits to deduce the exact solution of the nonlinear 

eigenvalue problem arising from nonlinear fracture mechanics analysis and to justify the numerical 

solutions of singular perturbation problems.  

 

Summary. The new analytical presentation of stress, strain and continuity fields both for plane 

strain and plane stress conditions is given. The results obtained differ from Zhao and Zhang's 

solution where the original formulation of the problem for plane stress conditions has been 

proposed. An analytical solution of the nonlinear eigenvalue problem arising from the fatigue crack 

growth problem in a damaged medium in coupled formulation is obtained. The perturbation 

technique is used. The method allows to find the analytical formula expressing the eigenvalue as the 

function of parameters of the damage evolution law. 
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