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Abstract. The paper is devoted to the fatigue growing crack problems in damaged media and
mutual effects of damage on the evolution of the stress-strain state near the crack tip and vice versa.
The new asymptotic study of fatigue crack growth in an isotropic linear elastic material based on the
continuum damage mechanics in the coupled (elasticity — damage) formulation under plane strain
and plane stress conditions is realized. The numerical solution of the two-point boundary value
problem for non-linear ordinary differential equations to which the fatigue crack growing problem
reduces is obtained. The new analytical presentation of stress, strain and continuity fields both for
plane strain and plane stress conditions is given. The results obtained differ from Zhao and Zhang's
solution where the original formulation of the problem for plane stress conditions has been
proposed. The analytical solution of the nonlinear eigenvalue problem arising from the fatigue crack
growth problem in a damaged medium in coupled formulation is justified by the perturbation theory
technique used. It is shown that the perturbation method allows to find the analytical formula
expressing the eigenvalue as the function of parameters of the damage evolution law.

Introduction. Accurate description of crack-tip stress and deformation fields is the basis to establish
a proper macroscopic fracture criterion and predict the failure of cracked structures. The interest in
the current paper is to reveal the asymptotic crack-tip fields in power-law material and (or) in a
damaged material with power law damage evolution equation. Nowadays fracture process is
considered as a multiscale process. It is necessary to distinguish the fracture process at macro-,
meso- and microscopic level and to include into consideration damage accumulation at different
levels either. Developing multiscale fracture and damage models implies hierarchy of stress
singularities: strong and weak singularities reflecting fracture and damage accumulation at different
scales. Stress singularities can be expressed as r* with A being the order of the singularity. To
obtain reasonable description of fracture process an analytical solution A= A(n,m) where n,m are
material parameters of stress-strain relations and damage evolution law for all eigenvalues similar to
the HRR stress field with theoretically known formula 4 =—-1/(n+1) is needed.

Asymptotic study of fatigue crack growth in a damaged medium. Consider a fatigue growing
crack lying on the x-axis with the coordinates origin located at the moving crack tip as shown in Fig.

1. The constitutive equations are formulated in the framework of continuum damage mechanics as
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Fig.1. Geometry of a fatigue crack in a damaged medium

where E and v are the Young’s modulus and Poisson’s ratio, respectively, and the continuity
variable evolutes according to
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where N is the number of cycles, c,n,m,y and o, are material constants.

The original statement of the problem is proposed in [1]. The asymptotic solution of fatigue crack
growth based on continuum damage mechanics given by Jin Zhao and Xing Zhang has aroused
considerable interest and is presented in books [2, 3] in details. However the results obtained in [1]
do not agree with the conclusions formulated in other works devoted to crack tip problems in
materials with the damage coupled stress-strain relations [3, 4]. Recent interest in the development
of multiscale fracture models has motivates extension of the asymptotic study of fatigue crack
growth based on damage mechanics. Following [1] the problem of plane stress and plane strain for
mode | is considered under small-scale damage conditions and the equilibrium equations are
satisfied by introducing the Airy stress function

F(r,0) =ar*f(6). (3)

The stress components near a crack tip are separable and can be expressed as

Grr(r’ 9) = arla-rr 9), O'ee(r’ 9) = mﬂgee(g)’ O're(r1 9) = arla-ra (9),

where &, =(1+2)f (@) + £"(0), 5,, = (A +2)A+1)f (8),5,, = (A +1)f'(H).

The continuity field around the crack tip is presented in the form

w(r,0)=pr'g(6). @)

The compatibility equation, the kinetic law (2) and asymptotic expansions (3) and (4) result in the
following nonlinear eigenvalue problem

fV —2Ef"+(G +b, )f"—b,Ef +b, +&G )f =0 (5)
for plane stress conditions;
fV —2Ef "G +d,)f "+d,Ef +(d; +5G /(1—v))f =0 (6)

for plane strain conditions;
g'sind - g cosd =-5"g ™" (7)



where the following notations are accepted
E=9'(0)/9(6), G=2E*-g"(9)/9(0),
b=e-6-2(1-v+1), b,=2e +(1-v+1e,,
b3:_e4’ e, =(A-we-(A-u+le, e=A-u)+A-pu+hv
dy=[s, ~2(2 - p+s;, — (A= @)A-v) = (A -+ DA - v }IL-v),
d, =[2(2 - u+D-25]/1-V),

(4

=6+

u)[(/1 p+1)s, =8 /(1-v), p=mMA+D)/n+1)
GOy +<799+30r9)1 (for plane stress)
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g \/_[ ~Gyp) +4a,6]l (for plane strain)

with boundary conditions

f=1 f'(©=0 f£"(0)=0 g(0)=0, (8)
f(r)=0, f'(x)=0. (9)

Thus, the nonlinear eigenvalue problems (5), (7) and (6), (7) with boundary conditions (8), (9) are
formulated. It can be shown [1-4] that it is necessary to modify the traction free boundary
conditions. The careful numerical analysis of the problem formulated above shows that it is
impossible to find the eigenvalue A such that the boundary traction-free condition on the crack face
is satisfied. It turns out that the function g(&) from some value of polar angle 8becomes negative
what emphatically it is not. The negative values g(&) of contradict to the physical sense of the
continuity parameter. To eliminate this difficulty the modified statement of the problem is proposed.
Whereupon, a set of favourable boundary conditions are given as

f(@=6,)=0, f'(@=6,)=0, g(@=6,)=0 (10)

In [1] the two-point boundary value (5), (7) with boundary (10) is studied. A series of numerical
results realized in [1] show the dependence of eigenvalue A on the values of material parameters
m,n. In this contribution a series of numerical experiments for plane stress and plane strain
conditions are fulfilled. Thorough analysis of the nonlinear eigenvalue problems considered allows
to find the analytical presentation of the angular distributions of the stress component and the
continuity parameter determined by the analytical solution of (5), (7), (10) and (6), (7), (10)

1i+2
f(0) =M, 9(0) =« (cosO) 0<0<6, 6,=2,
A+2)(1+)) 2
hmpm (11)
l+n—-m

The asymptotic fields in the vicinity of the fatigue crack have the form
G,y (r,0) = "™ (cos 0¥, &, (r,0) = "™ (cos @) * sin 6,

o, (r,0) = ™" Msing(cos B)', y(r,0) = k™I (cog Py

The stress and continuity distribution are valid for plane stress and plane strain conditions. The
results are presented in Fig.2-4.

Perturbation theory method and its application for solving the nonlinear eigenvalue problems.
The exact solution of stresses and continuity is found on the basis of numerical analysis of the
boundary value problems for nonlinear ordinary differential equations. This raises the question of
whether Eqg. (11) can be determined in a general case? It turns out that the perturbation method
technique can be easily applied for nonlinear eigenvalue problems and hence it is possible to obtain
the eigenvalues of nonlinear eigenvalue problem in the closed form.
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Fig.2. Normalized angular distributions of stress and angular continuity distribution for
n=2m=2
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Fig. 3. Normalized angular distributions of stress and angular continuity distribution for
n=4,m=2
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Fig. 4. Normalized angular distributions of stress and angular continuity distribution for
n=7,m=2
One can introduce a small parameter
E=H—Hy (12)
reflecting nonlinearity of the problem: g, is eigenvalue of linear “undisturbed” problem when
n=1 m=1 are valid; u is eigenvalue of nonlinear “disturbed” problem when n>1, m>1.
We seek a third-order uniform expansion of expanding the angular functions f (&), g(6d) and
parameters m, n:

f(0) = f,(0) + &£,(0) + £*1,(0) + £ ,(0) + ...,

9(0) = 9(9) +9,(6) + £°9,(0) + £°95 () +...,

U=y +&, A=A+l +&A +& A +... (13)
n=1+en +&’n, +&°n, +...,

m=1+em +&°m, +&’m, +...

Introducing asymptotic expansions (12) and (13) into Egs. (5), (6) and (7) and collecting terms of

equal power in the small parameter the set of linear differential equations is obtained.
The zeroth-order problem for plane strain conditions has the form

Q-v) )Y —20-V)E,f, +1-V)G,f, +b)f, —2E0) f, +e'G,f, +bjf, =0, (14)
UoSiNG — 1, c0s0 = -V 1 g,, (15)
where the following notations are adopted

E,=0,(0)/9,(6), Gy =2E; —g,/9y,

bl =7-9v, b)=5-9v, b)=0, € =3-9v,

o0 = [fo ol +2)To ]+ 402 + 2P (1, F

The solution of Egs. (14), (15) should satisfy the symmetry conditions

f,'(@=0)=0, f,""(@=0)=0, g, (@=0)=0, (16)
the regularity requirement
6,(0=0)=(c"(6=0)}"* (17)
and the traction free condition at 8 = 6,
f,(0=6,)=0, f,'(0@=6,)=0, g,(0=6,)=0. (18)
The solution of the boundary value problem (14) — (18) can be presented in the form
f,(0) = %cos3 0, g,(0)=cosO, u,=1 6, :%. (19)
The first-order boundary value problem can be formulated as
A-v) " —20-V)E,f, +(1-V)G,f, +b]f —2E0)f +e'G,f, +b)f, —
la-vyty el Jor /go + [ v)(fo 05/ g5 — 26} gy — 205 5/ 9y + 4e0F, 05/ 020, +

f, 0. 9. fg. f,0. f.g.° f 0,
a-v) 2o _gTo% | Tobo | )opo To9o g0 Todo 0 T 1y _ (20)

9 9 9 9 9 9

_ B 20! fggo G, —bif,,

0



£, —3f, ), | f, -3f, f, £ =3f% (o)
(WJ " 4{ goU(O) S8 goae(O) go(ffe(m)2 (goo-e ) b
AT - . oy ]
43l =3h _3h =3 44 f(o)—16 (950 £ 1f, +

i 900 9,0 900 g, \o ( éo))
-3 _i)fo+3f 31 0 (906} |1, +sin 6y, —
L gOGe (go é ))
ONSS JEORY
| =559, +|sing - ezj 0,=
go gO (21)
z(fo'"—3f0')4£1f ~3f,

44 16,
g,0,” o, go

T =31, Bt +8a(f )

9, (0 f
- {[ Gg‘EO) J(m1 Inc{” —n,In go)} .
0

Egs. (20), (21) comprise the system of two linear inhomogeneous equations with respect to
functions f,(@) and g,(6). Since the homogeneous problem (14)-(18) has a nontrivial solution, the

inhomogeneous problem (20), (21) has a solution only if a solvability conditions is satisfied. The
solvability condition can be formulated by using a solution of the self-adjoint problem [6]:

(0)

(9,0 }+9, 06 — g, 5in 6 -

zl
J.o 2(H1W4_H2W6)j‘9:01 (22)
where
f —3f At
( 0,0° (0))4 /’11 (0) 16}1 éO)

(o =31, pat, +8A1( f

( o
9o

e

(gOO'e(O) )+g(') cos@ —g,sing —

J(m1 Inc{® —n, In go)}

+(—bjfo" 2t fo% _ g —bglfj/(l—v),
0
(£, =31, BAf, —3f
9,0 4’11 (0)0 f0_16’11 9,0 (0)

(f ~3f, WA t, +821( f

( o
90

9,2 (c@f

(goo—e“” )+g(') cos @ —g,sin@ —

}(m1 Inc® —n,In go)}

.
@-v)sin@

/sin @,



v, are the solution of the adjoint problem corresponding to (20), (21):

V=g, t dal//e

l//‘z ==y, +ay, +dp,

l//é =y, tay,+ leG

‘//4‘1 ==y, +agw, +dw,

l//é =azy, + dsl//a

Ve =5 +a, +dys,

where a, = (P,ds — Psth )/(Pols), 8 = (P,05 — PsCl, )/ Pols): @, = (Ps0s — P53 )/( PoTls ).
3, = (405 — P50, )/(Pols): & = (Pels — Pslls )/( Py 35 = (P05 — PsCly )/( Polls):
Pp=1-v, p :_2(1_V)E01 P, = (1_V)Go +b3?’ Ps :_ZbOEO’ P, :eOG +b3? 1

p5:—(l—v)f—°—el°h,pﬁz(l—v){—f—°+4f 9o } ope fo g0, 490
9 0 9 do

0 0 0 0

—(1-v) ogo fogo fg0 +2p0 Jo%s fogo _ 40 fogo+e1 ogo
go go gO 0 0 0

f; —3f, £, —3f, f, f, -3f .
-0 2h q,= 1160~ 10 ="°% (g 5O,
1T g, 00 9% 9,00 007 ¢l (0))2(90% )
. ., oy g
=3 gf-3h o 1, 1690 )f __fe -3 3f =31, (3. 50).

+ g, =— +
(0) (0) (0) 0r 4 (0)
gO e gOO-e goo-e go( (0)) gOO-e ( (0))Z

q,=sind, gq,=—0c/g, q, =sin49—(a§°)/g0).

The boundary conditions of the adjoint problem are

p,(0)=0, w,(0)=0, w,(0)=0,

wi(r12)=0, w,(x12)=0, w(z/2)=0.

The solvability condition (22) enables to obtain the first perturbation of n—m: n,—m, =-1. The
analytical solution of the boundary value problem (20), (21) can be found

f,(0) = %cos3 H(In cosé — g] 0,(8) =cosfIncosé.

The second-order and the third problems have been either analyzed. The solvability conditions for
each of the inhomogeneous system have been considered and studied. The solvability condition for

the problem with respect to functions f,(¢) and g,(¢) allows to find n, —m, =1. The analytical
solution for the angular function f,(#) and g,(&) have the following form

1 , 5 19 2

f,(0) = —cos®H(Incos@)" — —cos® @Incos & + ——cos® 6, ) = cosé(Incos ).

2(6) =75 cos” O(Incos o) — 216 9.(0) = cos A(Incos )
Analysis of the solvability condition for the boundary value problem for the function f,(¢) and

05(€) results in the three-term asymptotic expansion of the difference n—m:

Nn-m=—gs+&° —&*+0(s*) (23)
Using the asymptotic series of the Poincare type (23) (the straightforward expasion) one can
construct the Pade approximation



&
n-m=-———.

Eliminating by the use of Eq. (12) the small parameter from the equation obtained one can find the
final formula

1- 1

n-m=—=and y=—.
y7, l1+n—-m
Analysis of the asymptotic expansion for the function f (¢) and g(@) enables to find the exact
solution of the nonlinear eigenvalue problem
H+2

£(0)= cos“"“ @ ’

(A+2)(1+])
Hence, the perturbation theory technique permits to deduce the exact solution of the nonlinear

eigenvalue problem arising from nonlinear fracture mechanics analysis and to justify the numerical
solutions of singular perturbation problems.

g(@) =cos” 4.

Summary. The new analytical presentation of stress, strain and continuity fields both for plane
strain and plane stress conditions is given. The results obtained differ from Zhao and Zhang's
solution where the original formulation of the problem for plane stress conditions has been
proposed. An analytical solution of the nonlinear eigenvalue problem arising from the fatigue crack
growth problem in a damaged medium in coupled formulation is obtained. The perturbation
technique is used. The method allows to find the analytical formula expressing the eigenvalue as the
function of parameters of the damage evolution law.
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