
Modelling the Effect of Orientation on the Shock Response of a 
Damageable Composite Material  

 

Alexander A. Lukyanov 

NOU VPO “International Institute of Computer Science Technologies”, 

Lipetsk Branch, 

398055, Lipetsk, Prospekt Serzhanta Kuvshinova, House 5B, Russia. 
e-mail: aaluk@mail.ru 

 
Keywords: carbon fibres; impact behaviour; anisotropy; shock waves; damage mechanics.  
Abstract. The purpose of this paper is the investigation of the effect of fibre orientation on the 

shock response of a damageable carbon fibre-epoxy composite (CFEC). A carbon fibre-epoxy 

composite (CFEC) shock response in the through-thickness orientation and in one of the fibre 

directions is significantly different. Modelling the effect of fibre orientation on the shock response 

of a CFEC has been performed using a generalised decomposition of the stress tensor [A.A. 

Lukyanov, Int. J. Plasticity 24, 140 (2008)] and an accurate extrapolation of high-pressure shock 

Hugoniot states to other thermodynamics states for shocked CFEC materials. The analysis of the 

experimental data subject to the linear relation between shock velocities and particle velocities has 

shown that damage softening process produces discontinuities both in value and slope in the 

generalized bulk shock velocity AU
S

 and particle velocity up  relation [A.A. Lukyanov, Eur Phys J 

B 74, 35 (2010)]. Therefore, in order to remove these discontinuities, the three-wave structure (non-

linear anisotropic, fracture and isotropic elastic waves) that accompanies damage softening process 

is proposed in this work for describing CFEC behavior under shock loading. A numerical 

calculation shows that Hugoniot Stress Levels (HELs) agree with the experimental data for selected 

CFEC material in different directions at low and at high intensities. In the through-thickness 

orientation, the material behaves similar to a simple polymer. In the fibre direction, the proposed 

model explains a pronounced ramp, before at sufficiently high stresses, and a much faster rising 

shock above it. The results are presented and discussed, and future studies are outlined. 

 

Introduction  
There are several types of composite materials, e.g., heterogeneous and layered composites.  

Investigation of composite material behaviour has found significant interest in the research 

community due to the widespread application of anisotropic materials in aerospace, military and 

civil engineering problems. Despite this, mechanical behaviour of composite materials in shock 

waves due to its complexities is still not fully understood, e.g. formation and propagation of the 

shock waves, initialization and propagation of micro- and macro- cracks. The purpose of this paper 

is the investigation of the effect of fibre orientation on the shock response of a damageable carbon 

fibre-epoxy composite (CFEC). In general, a single theoretical and numerical framework is not 

applicable to different composite materials; however, it is possible to use in most of the cases a 

thermodynamically consistent framework for modelling the response of these materials. This 

framework is building on the non-linear continuum mechanics formalism, couples non-linear 

elasticity with appropriate inelastic model within a thermodynamically consent numerical 

incremental formalism. Due to the experimentally observed behavior of anisotropic materials, a new 

orthotropic hydrocode model was developed from the theoretical basis. This was necessary because 

hydrostatic pressure inside these anisotropic materials depends on deviatoric strain components as 



well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the 

volumetric straining in the material. This article presents these constitutive equations for the shock 

waves modelling of damageable carbon fibre-epoxy composite. The developed model includes 

orthotropic material stiffness, a non-linear anisotropic equation of state and material damage 

softening within a unified formulation.  

 

Mathematical model of damageable composite 

The composite materials response under shock loading leads to a nonlinear behaviour (i.e., large 

compressions, damage softening), therefore, the mathematically and thermodynamically consistent 

constitutive equations in order to distinguish between thermodynamic compressibility effect 

(equation of state) response and the ability of the material to carry shear loading are required [1], [3-

5], [7-9], [11-16], [20-21]. It is a well known fact that for isotropic material the stress tensor can be 

described in terms of two quantities: the hydrostatic stress (or pressure), which only induces a 

change of scale, and the deviatoric stress, which only induces a change of shape. However, for 

anisotropic materials (e.g. for an orthotropic material), the decomposition of the stress and strain 

tensors into spherical and deviatoric parts in stress space and strain space results in stress and strain 

components which do not correspond to each other due to the material properties’ anisotropy. For an 

anisotropic materials, the mean stress depends on the deviatoric strains, therefore, the decomposition 

used for isotropic materials is not applicable [7-9], [14-16], [20-21]. The generalised decomposition 

of the stress tensor is defined as: 
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where  *p ij   is the generalised spherical part of the stress tensor,  Sij  is the generalised 

deviatoric stress tensor (   0Sij ij   ), *p  is the total generalised "pressure",   is the damage 

parameter,  ij   is the first generalisation of the Kronecker delta symbol at a given damage state 

 , EOSp  is the pressure related to an Equation of State (EOS) and  ij   is the second 

generalisation of the Kronecker delta symbol at a given damage state  , 
kl

D  is the strain rate 

(symmetric part of the velocity gradient), d
kl

 is the deviator rate of deformation,  and symbol   

denotes a frame-invariant Jaumann (objective) rates. The summation convention is implied by the 

repeated indices. The elements of the tensor  ij   are 
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where  Cij   is the positive-definite stiffness matrix (written in Voigt notation) at a given damage 

state  , ACij  is the stiffness matrix (written in Voigt notation) for intact material (i.e., for 0  ), 

ICij  is the stiffness matrix (written in Voigt notation) for fully damaged material (i.e., for 1  ). 

The elements of the tensor  ij   are 
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where    
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
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 are elements of compliance matrix (written in Voigt notation) at a 

given damage state  ,  K
S
  represents the second generalised bulk modulus at a given damage 

state  . Note that the generalised decomposition of the stress tensor can be applied for all 

composite materials of any symmetry and represents a mathematically consistent generalisation of 

the conventional isotropic case. In the limit of isotropy, the proposed generalisation returns to the 

traditional classical case where tensors  ij  ,  ij   equal ij  which is independent of damage 

parameter  and parameters  K
C

  and  K
S
  reduce to the well-know expression for 

conventional isotropic bulk modulus.  

The extrapolation has been done by using a very popular form of equation of state EOSp  that is 

used extensively for isotropic solid continua is the Mie- Grüneisen EOS. The most commonly used 

form of the Mie-Grüneisen equation of state for solid materials which uses shock Hugoniot as the 

reference curve is given below:   
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where  APH   is the Hugoniot pressure at a given damage state  ,   is relative change of volume, 

   is the Grüneisen parameter at a given damage state  , and e  is the specific internal energy. 

The Rankine-Hugoniot equations for the shock jump conditions can be regarded as defining a 

relation between any pair of the variables  , p , e , up  and AU
S

 [22].  Generally, the Hugoniot 

pressure and a shock velocity AU
S

 is a non-linear function of particle velocity up  and damage 

parameter . It is given by the following relation [23]: 
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where AU
S

 represents the generalised shock velocity in the directions of anisotropic bulk 

orientation. The corresponding Mie-Grüneisen EOS defines pressure as:   
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where  * *
0 0
    is the initial (released) density for a given damage state  , E  is the internal 

energy per initial specific volume,  c   is the intercept of the AU
S

- pu  curve at a given damage 

state  ,  1
S  ,  2

S  ,  3
S   are the coefficients of the slope of the AU

S
- pu  curve Eq. 11 at a 

given damage state  ,  0
   is Grüneisen gamma for undeformed material at a given damage 

state  , and  a   is the first order volume correction to 
0
  at a given damage state  . 

Furthermore, the EOS properties similar to elastic properties can be described by the following 

relations: 
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define it’s EOS [8] and have the following values: 31500 kg/m
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, 0.5A Ia  . In this work, it assumed three-wave structure (non-linear anisotropic, 

fracture and isotropic elastic waves), the relation Eqs. 14 - 16, and the following damage model: 
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where **up  is the particle velocity at the beginning of damage softening process, N  is the material 

parameter, 
2

 is the Euclidean norm. Note these parameters are functions of orientation. Also, 

using the experimental data [24], the following data is defined: ** ** 53.8 m/su up L  , 

* * 538.5 m/su up L  , 
1

16
N N

L
   (through the thickness), and ** ** 58.9 m/su up F  , 

* * 566.1m/su up F  , 
1

25
N N

F
   (along the fibre 00 ), and ** ** 57.3m/su up W  , 

* * 550.1m/su up W  , 
1

25
N N

W
   (along the fibre 090 ). It is assumed that the locus of critical 

particle velocities is an ellipse:         
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where 
*,**up  represents critical velocities *up  and **up  in the Eq. 18. Velocities ( xup , 

y
up , zup )  are 

computed using transformation matrix Q  between orthogonal Cartesian coordinate ( x , y , z ) and 

orthogonal material Cartesian coordinate ( x , y , z ) in 3R . The orthogonal Cartesian coordinate 

( x , y , z ) is defined by generalized bulk shock velocity AU
S

 such as the vector AU
S

 aligns with 

x -axis. The experimental data [24] were obtained for longitudinal (through thickness x x ) 

orientation and along the fibre 00  ( x y ) orientation shock wave propagation in the selected CFC 

material. The transformation matrix Q  can be defined by the rotations Euler’s angles ( , ,  ) as: 
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Note that Euler’s angles are 0  , 0  , 0   for through the thickness orientation, / 2   , 

0  , 0   for along the fibre 00  orientation, and / 2  , / 2  , 0   for along the fibre 
090 orientation. 

 

Numerical simulation of anisotropic shock wave propagation in CFEC  
The work discussed below concerns the modelling of shock response of a carbon-fibre epoxy 

composite in different directions. The experiment was done by the technique of plate impact and 

details can be found in [8, 20-21, 24]. The plate-impact numerical simulations were performed by 

solving conventional conservation laws (dealing with mass, linear momentum and energy) for 

monopolar media, these coupled with the appropriate constitutive equations [7, 14-16, 20-21]. The 

plate impact test was modelled using a uniaxial strain state (one-dimensional mathematical 

formulation in strain space) and the adiabatic approximation [7, 14-16, 20-21]. The process of 

validation and verification of the non-damageable model (anisotropic and isotropic), numerical code 

and simulation of shock wave propagation in anisotropic materials was presented previously [7, 14-

16, 20-21]. Material properties of anisotropic undamaged CFEC material ( x - direction corresponds 

to the through the thickness direction, y -direction corresponds to the fill direction, and z - direction 

to the wrap direction) are 13.678GPaEx  , 68.467 GPaEy  , 66.537GPaEz  , 0.0044xz  , 

0.0045xy  , 0.04zy  [8]. Material properties of isotropic damaged CFEC material are: 

10.434GPa  (first parameter Lame), 0.18GPaG  (second parameter Lame) [8].  

A fundamental character of the material parameters specified in previous sections must be 

validated in different directions. Numerical computed properties are in good agreement with the 

experimental data for selected CFEC material in different directions at low and at high intensities.  

In fig. 1, the data is depicted where Shock Hugoniot stress levels data as a function of orientation of 

the shock axis (in through thickness and fibre 00  orientations) is examined. Although, the results 

show good agreement in the stress magnitude between experimental data and numerical simulations 

for both orientations, there is a lack of experimental data below particle velocity of ** 58.9 m/suF   

for making a final conclusion. 

 

Fig. 1. Shock Hugoniot stress levels of carbon fibre epoxy composite in stress-particle velocity 

space for through thickness (dashed line) and fibre 00  (solid line) orientations. Experimental data 

for through thickness and fibre 00  orientations are depicted by squares and circles respectively.    

 



  

In the through-thickness orientation, the material behaves similar to a simple polymer. In the 

fibre direction, the proposed model explains a pronounced ramp, before at sufficiently high stresses, 

and a much faster rising shock above it. The ramped nature of the shock back surface gauge tracers 

allowed determining two wave velocities, a velocity on the ramped part ctoe  and a velocity on the 

main part c
head

 of the signal respectively. The velocities ctoe   and c
head

 were computed at the 

beginning of the rises of the stress pulses and at the maximum stress amplitude [24]. The numerical 

simulation results in the fibre 00  orientation lead to the average value of ca. 6900 m/sctoe   over 

the following particle velocity range **0;uF
 
  

, where  ** 58.9 m/suF   is the particle velocity at the 

beginning of damage softening process. There is a quite a high degree of scatter in this experimental 

data, but it was reported a value of ca. 7000 m/s [24]. Note that the longitudinal speed of sound in 

the fibre 00  orientation computed using homogeneous Hooke’s law is ca. 6666 m/s , further 

suggesting that if this wave has been transmitted along 00  fibre orientation, it is for undamaged 

anisotropic structure. In contrast, the second wave velocity c
head

 in the fibre 00  orientation, whilst 

initially greater (for low intensities of shock waves and damage distribution) than the shock velocity 

in the through thickness orientation, eventually converges with that data set for fully damaged state.       

The good agreement between the results can be observed and leads to the conclusion that 

constitutive equation presented in this paper can be used for the simulation of shock wave 

propagation within damageable CFEC material. Reduction of the model to the conventional 

constitutive equations in the limit of isotropy allows for its use in modelling wide range of materials. 

 

Summary  
In this paper, thermodynamically and mathematically consistent constitutive equations suitable 

for characterising shock wave propagation in a damageable anisotropic composite (CFEC) material 

are presented. An accurate extrapolation of high-pressure shock Hugoniot states to other 

thermodynamics states for shocked Carbon-Epoxy Fibre Composite (CFEC) materials was 

presented. A generalised decomposition for separation of material volumetric compression 

(compressibility effects equation of state) from deviatoric strain effects is formulated, which allows 

for the consistent calculation of stresses in different regions of material’s behaviour (i.e. in the non-

linear anisotropic, fracture and isotropic regions). Numerical simulations of the behaviour of the 

CFEC material under shock loading conditions based on the new system of constitutive equations 

were performed. The plate impact experiments on CFEC material were carried out by Millett et al. 

[24]. A comparison of the experimentally obtained general pulse shape and Hugoniot stress level in 

different directions with numerical simulation shows a good agreement and suggests that the EOS is 

performing satisfactorily. In addition, an analytical calculation showed that the Hugoniot Stress 

Levels (HSLs) in different directions, for a CFEC composite subject to the three-wave structure 

(non-linear anisotropic, fracture and isotropic elastic waves), agree with experimental measurements 

at both low shock intensities (where the 00  orientation was significantly stiffer than the through-

thickness orientation) and at high shock intensities (where the HSLs of the two orientations 

converged due to the presence of damage softening), this also in agreement with the stability 

requirements formulated by Bethe [8]. 
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