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Abstract. An axisymmetric static problem for a penny-shaped crack in heterogeneous isotropic 

elastic space is considered. It is assumed axisymmetric distributions of the Young modulus, 

Poisson's ratio and residual stresses coaxial with the crack axis. The elastic moduli vary in 

orthogonal direction to the crack plane in accordance with specific laws. The analysis is performed 

for the case of co-sinusoidal distributions of the residual stresses, for which we compute the mode I 

stress intensity factors for the crack during its quasistatic growth.  

Introduction  
The development of numerical methods for analysing crack propagation in Functionally Graded 

Materials (FGM) is an important problem of material sciences. In this study a 3D problem of 

elastostatics addressing the quasistatic growth of a penny-shaped crack in a heterogeneous isotropic 

FGM medium subjected to axisymmetric external and residual loads is considered. The method 

utilises the previously developed analytical approach reported in [1] that is applicable for 

axisymmetric problems in FGM. The aim of this study is to model the presence of residual stresses 

in FGM (that can be created during the process of manufacturing) and to investigate what is the 

influence of those on the fracture characteristics of the heterogeneous material possessing certain 

specific distributions of its elastic moduli. The residual stresses, in general, should be in static 

equilibrium, thus their 3D distribution cannot be selected arbitrary. Here we employ the method 

applied in [2] for modelling of the static trajectory of a curvilinear crack in elastic plate subjected 

(apart from external loads) to residual stress that manifest themselves as fluctuations of the total 

stress field. It has been suggested to take the residual stress into account by introducing random 

normal and shear loads of certain level on the crack surfaces. These can be introduced 

independently, which does not require the modelling of the total residual stress field at every point 

of the plate. In this study we accept that the level of the shear component of the residual stresses 

acting of the crack surfaces is negligible compare to the normal stresses. This assumption allows one 

to apply the technique based on dual integral equations developed in [3]. 

Crack in FGM half-space. 

An isotropic heterogeneous elastic space with a disc-like crack is considered. In is assumed that the 

space obeys polar symmetry with respect to a cylindrical coordinate frame (r,,z) and the elastic 

moduli depend on the depth (i.e. very along the z-axis). It is assumed that a crack develops in the 

direction orthogonal to the axis of symmetry (0,,z). It is also assumed that the plane z=0 is the 

plane of symmetry of the stress/displacement fields and the mechanical properties of the material. 

This allows one to restrict the analysis of the stress state to the lower half-space .  

Let us assume that Poisson’s coefficient, , is constant throughout the space, for simplicity =0.25 

and the Young modulus in the plane of symmetry varies in accordance with the following six laws 

of heterogeneity 












Hz

zHzf
EzE

iS

,1

0),(
)(  (1) 

where E
S
 is the Young modulus at infinity and the functions fi(z) (i=1,2…6) are as follows (they are 

graphically shown in Fig. 1) 
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Fig. 1. Moduli distribution with depth 

It is further assumed that the crack surfaces are loaded by uniformly distributed pressure of unit 

intensity combined with the co-sinusoidal distribution of normal residual stresses in the direction of 

the r-axis with the maximum intensity of about 10-20% of the uniform pressure. 

The total load acting on the crack surfaces can be presented through the series of Bessel’s functions 

(which is convenient for further calculations) in the form:   
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Here k (k=1,2….) are the positive roots of the following equation 
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They are put in increasing order, /+1>0, and  are given real numbers M1(-1,1) is a constant. 

The coefficients Gi are determined by the formula 
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Fig. 2 illustrates the profile of the loads applied to the crack surfaces. The solid curve marked by 

index 1 shows the load and the doted line 2 corresponds to the approximation by Bessel’s functions 



(Eq.3-5). Further consideration is limited to the case when the radius of the crack varies from 0.25H 

to 4H (where H in the thickness of inhomogeneity, as specified by Eq 1-2). 

  
Fig. 2. Load (curve 1) and its approximation (curve 2) used in further calculations. 

 

Based on the solution presented in [1] for the crack subjected to normal pressure, the crack opening 

displacements, (r), assumes the form  
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where the constants Ci are determined from the following system of linear algebraic equations 
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The distribution of the normal stresses on the crack plane in the radial direction is given by the 

following expression 
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For the determination of the mode I stress intensity factor KI one obtains 
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Results. 

Fig. 3 shows the changes in the mode I stress intensity factor when the crack radius varies in the 

range from 0.25H to 4.0H for the six different variation laws of the Young modulus in the vicinity 

of the crack for the oscillated load depicted in Fig. 2. The stress intensity factor is presented in a 

normalised form and calculated in accordance with Eq. 9. The numbered lines correspond to the 

heterogeneity law numbers as depicted in Fig. 1. 

 
Fig. 3. Dependences of the dimensionless mode I stress intensity factor calculated by Eq. 9 vs crack 

radius for different heterogeneity laws (1-6 as depicted in Fig. 1) 

 

For the sake of comparison Fig. 4 shows the dependences of the mode I stress intensity factors in the 

absence of the residual stresses for the same heterogeneous laws for variations of the Young 

modulus (the line marking is the same as in Fig. 3, apart from zero-marked line that represent the 

solution for the homogeneous space).  

As it is evident from the results presented in Fig. 3-4, the mode I stress intensity factor is less 

affected by the residual stresses for the case of soft layers than in the other cases. 



 
Fig. 4. Dependences of the dimensionless stress intensity factor calculated by Eq. 9 vs crack radius 

for different heterogeneity laws in the absence of residual stresses (same marking of heterogeneous 

laws as in Fig. 3 except for the straight line 0 that presents the constant dimensionless stress 

intensity factor in the homogeneous space)  

 

Some cases when both the Young modulus and Poisson’s ratio may vary with depth have also been 

analysed. Nine simple cases have been considered they assume that the moduli in the vicinity of a 

penny-shaped crack either uniformly increase or uniformly decrease with the depth as shown in Fig. 

5. The loads acting on the crack surfaces are the same as those presented in Fig. 2, i.e. they combine 

an external load p0 of unit intensity and the residual stresses, which intensity is of order between 10-

20% of p0. 

 
Fig. 5. Nine different combinations of the variations of elastic moduli in the vicinity of the crack 

 

The analysis of the results of calculations of the mode I stress intensity factors for 9 different cases 

has shown that the variations in Poisson's ratio has little effect on the change of KI in the presence of 



residual stresses in the vicinity of the crack. On the other hand the variations of the Young modulus 

in the direction orthogonal to the crack surfaces affect the magnitude of KI significantly in the 

presence of residual stresses. 

 
Fig. 6. Dependences of the dimensionless mode I stress intensity factors vs crack radius for different 

heterogeneity cases of variations of elastic moduli (the curves marked by numbers 1-9 correspond to 

the elastic moduli variation marked by the same nubers in Fig. 5) in 

 

Conclusions. 

We have developed a numerical approach capable of the determination of the mode I stress intensity 

factor for the penny-shaped crack that quasi-statically grows in a FGM subjected to the external 

loads and residual stresses. The method utilises the previously developed analytical approach for the 

consideration of axisymmetric problems reported in [1] and the approach suggested in [2] for taking 

into account the influence of residual stresses of random nature. 

In the numerical experiments we have examined the case of co-sinusoidal distributions of the 

residual stresses and certain types of variation of the Young modulus as depicted in the Fig. 1 and 

the variations of both elastic moduli as shown in Fig. 5. The analysed typical distributions of the 

residual stresses along the crack radius are shown in Fig. 2, it is assumed that the intensity of the 

residual stresses is of order of 10-20% of the external load.  

It has been shown that Poisson’s ratio variations with the depth do not significantly affect the values 

of KI. The influence of the residual stress fluctuations and the variations of the Young modulus on 

the mode I stress intensity factor is of the same order and much more pronounced than Poisson’s 

ratio. 
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