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Abstract. The crack growth rules are usually specified in terms of the potential energy release or of 

non local stress or strain criteria. In the present work, the criteria based on the critical plane concept 

are first discussed and expressed in terms of averaged stress developed in the crack front domain. 

The transition from tensile to shear fracture is predicted for varying mode mixity ratio. 

 

Introduction  
 

The mixed mode crack growth conditions have been analysed extensively for both monotonic and 

fatigue loading cases. The reviews of Qian and Fatemi [1] and recently by Mróz and Mróz [2] 

provide discussion of different criteria formulations and assessment of their applicability in 

quantitative prediction of crack growth, including major aspects, namely crack growth direction and 

rate of growth. The first group of fracture criteria is based on the potential energy release, expressed 

in terms of stress intensity factors KI, (I=1,2,3) or the energy release rates GI and the related path 

independent integrals JI. In the second group the fracture criteria are expressed in terms of stress or 

strain at the distance r from the crack tip, such as maximal tangential stress criterion (MTS), [3], 

maximal tangential strain, [4] or criterion expressed in terms of tangential stress or strain, [5], for 

which their limit values specify crack growth. In the third group, the fracture criteria are expressed 

in terms of the specific elastic energy at the small distance r, (S-criterion, [6]) or of the specific 

volumetric and distortional energies (T-criterion, [7] or MK-criterion [2, 8]). The advantages of 

using the two energies is that the value of one specific energy provides the radius r and the stress 

criterion of crack growth, the value of other provides the crack growth orientation. The critical plane 

approach provides the criterion in terms of normal and shear stresses acting on this plane with a 

proper strength function expressing the critical state [9, 10]. By averaging the stress or strain over a 

finite area of the critical plane, the non-local criteria are generated. In fact, most of stress or strain 

conditions are of non-local character, as the stress or strain state is specified at finite distance r from 

the crack tip or the averaged values are specified.  

 In the present paper the critical plane criteria are discussed with application to both brittle 

and ductile failure. The crack growth models for both monotonic and fatigue loading can then be 

formulated with account for critical plastic strain and material ductility. 

 

Stress state at the crack front 
 

Consider a plane crack of length 2a in a plate under uniform remote biaxial loading 
 y ,   kx , Fig. 1. 



 
Figure 1. Two dimensional loading conditions. 

 

The asymptotic elastic stress state at the crack front is represented by the sum of singular stress 

terms. In the local polar coordinate stress system we have 
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where the angles   and   are shown in Fig. 1. Under increasing boundary loading the crack growth 

may occur either in its plane, 0pr  , or along the direction 0pr   inclined to the crack plane. For 

the crack inclined at 2/   to the y-axis the tensile mode I loading occurs and for 4/  , k=-1 

the shear mode II of loading acts.  

The stress intensity factors associated with the singular stress terms are  

 cossin)1(),cos(sin 22 kaKkaK III      (3) 

and the energy release rates are  
*2
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where EE *  for the case of plane stress and )1/( 2*  EE  for the case of plane strain. Denoting 

the mode mixity by Cm , we can write 
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and 0Cm  when 2/   or ,0,0  k  and Cm  when 1,4/  k . 



 For the crack growing in its plane the critical state condition is usually specified as follows  
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where ICK  and IICK  are the limit values in modes I and II. However, the critical hoop stress 

condition requires only one parameter ICK  and then IICK  is predicted by the assumed criterion. 

 

Critical plane model for crack growth. 
 

There have been numerous formulations of the critical planes models aimed to predict crack growth 

under monotonic and fatigue loading. Here, we follow the non-local formulation of Seweryn and 

Mróz [9,10]. Consider a physical plane in the material element specified by a unit normal vector n. 

The plane traction vector and its components then are 

σnnn1τnnσnσnσΤ )(,)(,  nn      (7) 

Where 1 denotes the unit tensor,   denotes the dyadic product and dot denotes the scalar product. 

Similarly, the strain components are 

εnnn1γnnεnεnεΓ )(,)(,  nn      (8) 

In the case of brittle fracture it is assumed that crack initiation and growth depend on the surface 

traction components and the resulting crack opening and shear displacement provide the damage 

strains of the material element. The stress components nn  ,  are now used to express the crack 

growth condition. Assume the elliptical form for 0n  and the Coulomb condition for 0n , so 

we have 
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Where CC  ,  denote the failure stresses in tension and shear and   denotes the friction angle at the 

compressed crack interface. For a singular stress state the non-local stress failure condition is 

applied by averaging the normal and shear stress components on a plane element area 00 rr  , thus  
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and applying the crack growth condition in the form 

 01),(max1  nn
n

C RRF          (11) 

The size parameter 0r  represents the size of damage zone and can be specified from the formula  
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assuming transition to the Griffith conditions for tension and shear modes. Let us note that the stress 

condition (9) parallels the energy condition (7) and requires two stress parameters. The application 

of condition (9) to predict crack growth in fatigue loading was presented in [10]. 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The limit state locus for brittle-ductile fracture. 

 

The application to brittle and ductile failure conditions requires to account for plastic deformation 

and material ductility. Referring the stress state to the maximal shear plane, the value of yield stress 

y  can be introduced, Fig. 2. This value specifies the limit stress state ABC of brittle response and 

the elastic – plastic states bounded by the limit surface. The transition from brittle to ductile 

response at A and B now is specified by the mode mixity ratio 0/ nn  . To avoid elastic – plastic 

analysis, a simplified approach is proposed by applying the elastic singular stress distribution and 

the strength function R  in the form 
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As discussed by Chao and Liu [11], the fracture criterion is based on the competition of tensile 

fracture associated with the limit strength C  and shear fracture associated with the limit strength, 

C . The transition from tensile to shear mode is observed for varying mode mixity parameter CM , 

Fig. 3. The results are compared to experimental data from Hallback and Nilsson [12] and 

Maccagno and  Knott [13] for two different material: PMMA and aluminum 7075-T6, cf. Table 1.  
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Figure 3. (a) The sketch of R  function for p=3. (b) Comparison of the angle of crack propagation 

for function R  and p=3,based on the experimental data [12], AC1-specimen. 
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Predicted of crack growth orientation - results. 
 

The model predictions for varying values of exponent p are presented in Table 2 and 

compared with the aluminium data. Figures 3a,b present the failure locus and the evolution of crack 

orientation varying with the mode mixity ratio. Figures 4-9 illustrate the evolution of the strength 

function R  for varying critical plane orientation and specification of the crack propagation 

direction. 

 
material Shear strength 

C [MPa] 

Tensile strength 

C [MPa] 

PMMA 80 63 

Aluminum 

7075-T6 

330 570 

Table 1. Assumed material data. 

 

KI KII CM  pr  for p=2 pr  for p=3 pr  for p=4 

Exp. Data [w12] 

pr  

0 48,07 0 0 0 0 0 

20,5 37,38 0,48 -0,08 7,8 8,7 9,5 

34,6 28,75 0,77 -0,19 12,72 -50,1 17 

39,8 33,4 0,768 -0,19 -50,21 -50,39 -42 

40,5 29,9 0,8 -0,19 -48 18,3 -45 

31,2 0 1 0 0 0 0 

Table 2. Comparison of the angle of crack propagation for function R  and p=2,3,4,based on the 

experimental data [12], AC1-specimen. 

 

 
Figure 4. Results according to [11,12] for 07.48,0  III KK and 0CM . Shear fracture 

(aluminium).  
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Figure 5. Results according to [11,12] for 38.37,5.20  III KK  and 48.0CM . Shear fracture 

(aluminium). 
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Figure 6. Results according to [11,12] for 75.28,6.34  III KK  and 77.0CM . Shear fracture 

(aluminium). 
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Figure 7. Results according to [11,12] for 4.33,8.39  III KK  and 768.0CM . Tensile fracture 

(aluminium). 
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Figure 8. Results according to [11,12] for 9.29,5.40  III KK  and 8.0CM . Tensile fracture 

(aluminium). 
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Figure 9. Results according to [11,13] for 336.1,42.0  III KK  and 30.0CM . Tensile fracture 

(PMMA). 

 

Conclusion  
 

The present paper provides the description of fracture mode evolution for varying mode mixity 

parameter. The critical plane condition was used and the failure locus was specified in the stress 

plane 
C

n

C

n
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
,  where CC  ,  are the limit stress values. The material ductility effect can be 

simulated by assuming )(),( fsft  CCCC  , where ft and fs  are limit plastic strains in 

tension and shear. 
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