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Abstract. New experimental technique for a determination of the stress intensity factor and the 

non-singular T-stress in the case of narrow notches is developed. The approach is based on 

combining the crack compliance method and optical interferometric measurements of local 

deformation response as a result of crack length increment. Initial experimental information has 

a form of in-plane displacement component values, which are measured by electronic speckle-

pattern interferometry at some specific points located near the crack tip. The first four 

coefficients of Williams’ formulation can be thus derived. A determination of initial 

experimental data in immediate neighbourhood of the notch tip is the main feature of the 

developed approach. In this case, it is not necessary to use complex numerical models which are 

connected with geometrical parameters and loading conditions of the object under study in a 

stage of experimental data interpretation. Moreover, an availability of high-quality interference 

fringe patterns, which are free from rigid-body motions, serves as a reliable indicator of real 

stress state in the vicinity of the notch tip. Proposed approach gives the unique capability for an 

estimation of the effect of the notch tip radius on fracture mechanics parameters. A confirmation 

of this fact is based on the investigation of U-notch increment for two notch radius (0.3 mm and 

0.15 mm) in the same residual stress field. The values of the stress intensity factor and the T-

stress are calculated for notches of different length. A difference in maximum values of KI and 

T-stress is equal to 20% and 30%, respectively.  

 

Introduction  
Experimental determination of stress intensity factor (SIF) and T-stress for a crack of constant 

length under external load increment is of considerable current interest [1-8]. At the same time 

the crack compliance method is capable of SIF deriving by local crack length increasing under 

constant load conditions [9-10]. This presentation is devoted to a development and verification 

of new technique for a determination of SIF and T-stress values by combining the crack 

compliance method and optical interferometric measurements of local deformation response on a 

crack length increment. This approach is capable of estimating an influence of the notch radius 

on fracture mechanics parameters. 

 

Main principals and relations  

Modified version of the crack compliance method resides in recording interference fringe 

patterns, which correspond to a difference between two in-plane displacement component fields. 

Each field is referred to a crack of close but different length. The first exposure is made for a 

crack of initial length an-1 (see Figure 1). Then initial crack length is increased by small 
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increment Δan so that new total crack length becomes equal to an = an-1 + Δan and the second 

exposure is performed. Required interference fringe patterns are visualized by numerical 

subtraction of two images recorded for two cracks [11]. Two interferograms, which are obtained 

by this way for thin plate with through edge crack of mode I, are shown in Figure 2. Positive 

direction of x-axis in Figure 1 and Figure 2 coincides with a direction of the crack propagation. 

 

 
 

Fig. 1. Polar co-ordinate system related to the crack tip and the notation adopted. 
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Fig. 2. Specimen #2. Interference fringe pattern obtained  

in terms of in-plane displacement component u (a) and v (b). 

Initial crack length a14 = 28.5 mm with increment Δa15 = 1.7 mm; 

 

Developed procedure for deriving required fracture mechanics parameters from interference 

fringe patterns is based on Williams’ formulation [12]. Accordingly to this approach, 

displacement components at the crack tip proximity can be expressed as an infinite series for 

each in-plane displacement component. When x-direction coincides with the crack line the 

expressions for mode I crack have the following form: 
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where u and v are in-plane displacement component in direction of x and y axis, respectively; E 

is the elasticity modulus; μ is the Poisson’s ratio; k = (3 – μ)/(1 + μ) for plane stress and k = (3 – 

4μ) for plane strain conditions; An are constants to be determined; r and θ are radial and angular 

distance from the crack tip as it shown in Figure 1.  

 

Asymptotic formulation (1) gives the following form of elastic stress field for polar co-ordinate 

system with an origin at the crack tip [8]: 
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where KI is the stress intensity factor; fij(θ) is the angular function based on formulae (1); δij is 

the symbol of Kronecker’s determinant. The second term is called the T-stress. The value of T is 

constant stress acting parallel to the crack plane in the direction of crack extension with a 

magnitude proportional to the applied gross stress. The third term A3 is sometimes used as a 

transferability parameter like the T-stress. The non-singular term T represents a tension (or 

compression) stress. Positive T-stress strengthens the level of crack tip stress biaxiality and leads 

to high crack-tip constraint while negative T-stress leads to the lost of constraint. Values of KI 

and T-stress are defined from relations (1) and (2) by the following way [7]: 
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Generally initial experimental information represents a difference in absolute values of in-plane 

displacement components for two cracks of length an and an-1: 
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Relations (4) are valid for any point belonging to the proximity of crack tip located at point n. 

But right hand sides (4) include relative values of displacement components, which can not be 

used for direct determination of required An-values from decomposition (1). The key point of the 

developed approach resides in the fact that each interference fringe pattern of type shown in 

Figure 2 contains a set of specific points located at the crack border immediately. Absolute 

values of in-plane displacement components and then coefficients An from formulae (1) for a 

crack of an length can be determined at these points.  

 

Specific points are located along the crack line between point n–1 and point n where 

displacement components 1
ˆ

nv
 equal to zero before making a crack length increment. Thus 

interference fringe pattern shown in Figure 2b allows us a determination of absolute values of v-

component for each point with polar co-ordinates 0 ≤ r ≤ Δan and θ = 180
о
.  A distribution of v 

displacement component along the crack border (θ = 180
о
, see Figure 1), which corresponds to 

the first and the third terms of infinite series (1), is expressed as: 
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Relation (5) shows that deriving KI value from (3) demands a determination of v-values at two 

points belonging to the interval 0 ≤ r ≤ Δan, θ = 180
о
, as minimum. The first of them is starting 

point of the crack increment. A substitution of r = Δan and v(Δan, θ=180
о
) = vn in (5) gives: 
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where A
n

1 and A
n

3 are coefficients of decomposition (1) for a crack of an length. The second 

essential equation could be conveniently derived for the point with co-ordinate r = Δan/2. A 

substitution of r = Δan/2 and v(Δan/2, θ=180
о
) = v*n in (5) gives: 
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A value of stress intensity factor (SIF) KI follows from solving the system of linear algebraic 

equations (6) and (7) and a substitution of obtained result into the first from relations (3): 
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Taking into account only the first term from (1) leads to well-known Westergaard relation: 
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A characterisation of T-stress values is based on a determination of u displacement component 

directed along the crack line. A distribution of u displacement component for points belonging to 

the crack border (θ = 180
о
, see Figure 1), which corresponds to the second and the fours terms of 

infinite series (1), is expressed as: 
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Absolute value of u-component for a crack of an length can be again obtained at point n –1 with 

polar co-ordinates r = Δan and θ = 180
о
. A substitution of r = Δan and u(Δan, θ=180

о
) = un in (10) 

leads to the following relation: 
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Relation (11) gives us the first equation essential for a determination of T-stress value. Note that 

all experimental parameters needed for equations (6), (7) and (11) can be derived from 

interferograms pair, which correspond to Δan crack length increment. 

 

A formulation of the second required equation demands involving interference fringe pattern, 

which corresponds to crack length increasing from point n to point n+1 by Δan+1 increment (see 

Figure 1). Absolute value of u-component at specific point n+1 with co-ordinates r = Δan+1 and θ 

= 0 denoted as un+1 depends on the first four coefficients of decomposition (1) by the following 

way: 
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Relation (12) represents the second equation essential for a determination of T-stress because 

values of coefficients A1 and A3 are already known from relations (6) and (7). Note that a value 

of un+1 has to be derived from interference fringe pattern of type shown in Figure 2a, which are 

recorded for Δan+1 crack length increment. If an estimation of T-stress value is restricted by 

coefficient A
n

2 only, the following simplified formula is valid: 
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T-stress value (13) can be determined by using interference fringe pattern of type shown in 

Figure 2a recorded for crack length increment Δan only. 

 

Electronic speckle-pattern interferometry (ESPI) employs for a determination of in-plane 

displacement components [11]. Well-known optical system with normal illumination with 

respect to plane object surface and two symmetrical observation directions is used. When a 

projection of illumination directions onto plane surface of the investigated object coincides with 

ξ-direction, interference fringe pattern is described as:  
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where dξ is in-plane displacement components in ξ-direction; N = 1; 2; 3, … are the absolute 

fringe orders;  = 0.532 μm is the wavelength of laser illumination;  = 45
o
 is the angle between 

inclined illumination and normal observation directions. When ξ-direction coincides with x-axis 

and y-axis displacement component u and v can be derived accordingly to formula (14), 

respectively. 

 

Experimental verification  
Experimental verification of the developed approach is performed by using specially designed 

Specimen #2 made from 2024 aluminium alloy (E = 74000 MPa, μ = 0.33) shown in Figure 3. 

Working part of this specimen is a thin plate of dimensions 120x48x5 mm
3
. A crack of length a0 

= 20 mm is initially made in the middle of the shortest side in a direction of the symmetry cross-

section. The specimen is loaded by transverse force directed orthogonally to the crack line as it is 

shown in Figure 3. Step-by-step crack growth process is performed by narrow jewellery saw of 

0.3 mm width that corresponds to notch radius ρ = 0.15 mm. Such a procedure is accompanied 

with recording interference fringe patterns, which correspond to a difference between initial and 

final states of the specimen with two cracks for close load value. A scheme of the experiment 

involved resides in the following. External transverse load Pn1 is applied to the specimen. The 

first exposure is made for a crack of current length an-1. Then crack length is increased by small 

increment Δan and the second exposure is made for a crack of the final length an = an-1 + Δan. 

During a process of crack length increasing a value of acting force is slightly decreased to Pn2 

due to a compliance of the force gage. Two interference fringe patterns recorded for 15
th

 crack 

length increment are shown in Figure 2. 

 

Interference fringe patterns are recorded for 21 crack length increments starting from initial 

crack length a0 = 20 mm up to a0+an = 60 mm. The most reliable results related to the same 

crack length increments and loading conditions are obtained for steps 15, 16 and 17. Initial 

experimental information obtained for these steps are listed in tables 1 and 2. The values of 

coefficients A
n

1, A
n
3 and stress intensity factors in table 1 correspond to relations (5)-(8). It 

should be specially note that SIF values obtained by formula (9) coincide with corresponding 

data from table 1 within 3 per cent because A
n

3 values are practically equal to zero. The latter 



fact is valid for all steps considered. The values of coefficients A
n

2, A
n

4 and T-stresses obtained 

accordingly relations (11)-(12) are shown in table 2. An analysis of data presented in tables 1 and 

2 leads to the following conclusions. First, SIF values are in five per cent agreement with the 

results of finite element simulation. Experimentally obtained SIF values are close to SIF values 

presented in work [7] for DCB specimen of dimensions 120x64x5 mm
3
 made from 7010 T7651 

aluminium alloy by digital image correlation (DIC) technique. In particular, for a crack of 40 

mm total length and transverse load increment ΔP = 1 kN SIF-value is approximately equal to 

7.4 MPa◦m
0.5

 and does not depend on number of terms of Williams’ solution (1). The letter 

circumstance is also revealed in our investigation (A
n

3 = 0).  

 
 

Fig. 3. Drawing Specimen #1MV and a scheme of its loading. 

 

 

Table 1. Initial experimental information and SIF values for Specimen #2 

 

Step n  Pn1, 

[kN] 

Pn2, 

[kN] 

Δan, 

[mm] 

a0+an, 

[mm] 

Δn,  

[μm] 

Δ*n,  

[μm] 

nA1 , 

[kg/mm
3/2

] 

nA3 , 

[kg/mm
5/2

] 

n

IK , 

[MPa◦m
1/2

] 

15 0.64 0.60 1.7 50.2 11.9 8.4 8.4 0.0 6.7 

16 0.64 0.60 1.7 51.9 12.5 8.7 8.6 –0.1 6.8 

17 0.64 0.60 1.7 53.6 12.3 8.7 8.7 0.0 6.9 

 

Table 2. Initial experimental information and T-stress values for Specimen #2 

 

Step n  un, [μm] un+1, [μm] nA2 ,[ kg/mm
2
] 

nA4 , [kg/mm
3
] T

n
, [MPa] T

n*
, [MPa] 

15 –0.8 –2.3 –1.7 –1.5 –68 35 

16 –0.8 –2.8 –1.5 –1.6 –76 35 

 

An analysis of the accuracy of T-stress determination looks more difficult. First, used computer 

code is not capable of T-stress determination within appropriate accuracy. Second, the last 

column of table 2 includes T-stress values obtained by relation (13) denoted as T
n*

. A difference 

in a sign and value of T-stresses obtained by solving a system of linear algebraic equations (11)-

(12) and analogous data from relation (13) is evident. We believe that data, which correspond to 

terms A
n

2 and A
n

4, are more reliable. But T
n*

-values have the same sign that analogous values 

from work [7]. Data obtained by DIC technique show that T-stress reaches maximal value T
2 

= 



16.5 MPa for the second term of formulae (1) and then slightly decreases with increasing the 

term number. Thus we have to conclude that revealed problems concerning a determination of 

the sign and value of T-stress proceeding from data of optical interferometric methods should be 

more carefully verified. To do this a wide set of additional experiments is currently performed. A 

set of experiments analogous to described above is performed for Specimen #1, which is 

completely analogous to Specimen #2, by using a cut of 0.52 mm width that approximately 

corresponds to notch radius ρ = 0.26 mm. Obtained SIF and T-stress values for both specimens 

coincide within 5 per cent interval. 

 

Influence of the notch radius on fracture mechanics parameters  
Developed approach is capable of determining fracture mechanics parameters for cracks in 

residual stress field. It is also possible to estimate an influence of the notch radius on SIF and T-

stress values obtained through the use of relations (6)-(8) and (11)-(12), respectively. To do this 

a study of crack propagation in residual stress field near welded joint is performed. Two welded 

thin plates of dimensions 200x100x4 mm
3
 made from aluminium alloy and denoted as Specimen 

#015 (cut width b1 = 0.6 mm, notch radius ρ1 ~ 0.30 mm) and Specimen #016 (cut width b1 = 0.3 

mm, notch radius ρ2 ~ 0.15 mm) are investigated. Weld seam of lengths 100 mm coincides with 

one from symmetry cross-section of each specimen. Cracks in both specimens are propagated 

from a centre of the weld along the second symmetry cross-section in orthogonal to the weld 

direction. Preliminary determination of maximal residual stress values σy
max

 acting along the 

weld in both specimens serves for estimating an identity of residual stress fields. These values 

determined at points with co-ordinate x = 9 mm equal to σy
max

 = 130 and σy
max

 = 139 MPa for 

Specimen #015 and #016, respectively. Data are obtained by combining the hole drilling method 

and ESPI, with holes are drilled in specimen’s area, which does not contain a crack. 

 

 
 

Fig. 4. Dependences of absolute crack opening form total crack length. 

 

Experimental technique and a procedure of SIF and T-stress determination completely 

corresponds to the described above. Dependences of absolute crack opening form total crack 

length are shown in Figure 4. These curves are constructed by sequential summing each 



individual crack opening Δn referred to starting point of crack length increment. A difference in 

maximal values of absolute crack opening for Specimen #015 (ΔN(v) = 73 μm) and Specimen 

#016 (ΔN(v) = 110 μm) equals to 34 per cent. Points, where each curve reaches its maximal 

value, practically coincide and correspond to crack length aS = 16-18 mm. Dependences of SIF 

KI and T-stress T values from total crack length are shown in Figure 5a and Figure 5b, 

respectively. These results show that co-ordinate of points where KI = 0 and T = 0 do not depend 

on the notch radius and again correspond to crack length aS = 16-18 mm. Maximal SIF values for 

Specimen #015 (KI =14.3 MPa◦m
1/2

) and Specimen #016 (KI =17.8 MPa◦m
1/2

) differ by 20 per 

cent. A difference in maximal values of T-stress for Specimen #015 (T = –120 MPa) and 

Specimen #016 (T = –188 MPa) reaches 30 per cent. T-stresses shown in Figure 5b are derived 

on a base of relations (11) and (12) It should be specially noted that formula (13) gives T = 0 for 

both specimens and any crack length increment. 

 

   
                                         a                                                                           b 

 

Fig. 5. Dependences of SIF (a) and T-stress (b) values form total crack length. 

 

Summary  
New technique for a determination of fracture mechanics parameters is developed. Its essence 

resides in a measurement of local deformation response on small crack length increment by 

electronic speckle-pattern interferometry. Obtained experimental information is capable of 

deriving the first four coefficients of Williams’ asymptotic series and further calculations of 

stress intensity factor and T-stress values. Developed approach allows us an estimation of 

dependencies of fracture mechanics parameters from a real width of the cut and/or U-notch 

radius. Two cases are considered for U-notches of radius ρ1 ~ 0.30 mm and ρ2 ~ 0.15 mm. The 

first of them is edge crack in specially designed specimen of DCB type. Performed study shows 

that there is no detectable difference in both SIF and T-stress values. The second case is the 

investigation of crack propagation in the same residual stress field for two notches of radius ρ1 ~ 

0.30 mm and ρ2 ~ 0.15 mm. A difference in maximal values of KI and T-stress is equal to 20 and 

30 per cent, respectively.  
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