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Abstract. The first part of the paper reviews the different failure criteria proposed for wood under 

condition multiaxial loading. A statistical analysis is performed about the fitting of these criteria to 

the experimental data, from literature, for clear spruce wood under different loading conditions. 

Eventually a new failure criterion is proposed. It is a non-continuous failure criterion that, without 

using a larger number of fitting parameters than the other criteria, provides a substantial better 

fitting to the observed experimental results. This non-continuous criterion distinguishes fiber failure 

(as previously proposed by Norris) from the other failure mechanisms. It is claimed that the same 

criteria may be used for other wood species. 

 

Introduction  
Wood is a sustainable building material that captures CO2 and it is easily recyclable. In this sense, 

its use as a structural element contributes to protect the environment, but its use requires a good 

knowledge about its load carrying ability. Wood is a natural biological material with a large scatter 

in its behavior. Its behavior depends on the wood type, age, humidity, and of course, orientation 

with respect to the stresses. Wood structure is anisotropic and in most cases its behavior is 

simplified to orthotropic. 

There are a large number of criteria proposed for wood and composite materials. To what extent 

criteria used for artificial, fiber reinforced materials accurately represent failure in wood will be 

treated with some extension. These criteria have a different number of parameters to fit the 

experimentally observed behavior. The larger the number of parameter the better the fitting to the 

experiments, but on the other hand also the characterization of a new type of wood will require a 

larger campaign of tests to estimated all the parameters.  

Many different phenomenological failure criteria have been proposed; most of them are based on 

quadric surfaces, in which certain constraints are taken strictly from geometrical considerations to 

achieve a closed failure envelope. Some of the criteria include dependent or independent interaction 

coefficients for bi-axial stress conditions. The models do not explain the mechanism of failure itself. 

They merely identify failure (yes or no), and are usually regarded in practice as a simple and reliable 

tool for design. Most of the criteria were developed for composite materials, but are extensively 

applied for wood. 

Most failure criteria are continuous in the stress space, but a few are non continuous accounting for 

different failure mechanisms. Different failure mechanisms are present in the failure of wood: fibers 



might break, delamination might take place among the fibers, buckling in compression of fibers is 

observed with kinks, etc. Because of the large scatter of wood (even dealing with clear blocks) 

hinders these micromechanisms of failure. 

A large amount of experiments were conducted by Eberhardsteiner [1] on clear spruce under 

multiaxial loading. These raw data are analyzed for the different proposed criteria and their ability to 

predict the experiments is discussed, including the effect of the number of parameters.  

 

Experimental data 

In the open literature there is an extensive amount of data about the (uniaxial) tensile behavior of 

different kinds of woods. But it is not the case under multiaxial loading conditions. Eberhardsteiner 

[1] has published a numerous amount of experimental results carried out on cruciform test-pieces of 

clear spruce wood, tested in multiaxial conditions under plane stress conditions. This work uses this 

data to analyze and compare the different failure criteria published in the literature. 

Description of the tests. The test-pieces used by Eberhardsteiner [1] had 140  140 mm, and a 

variable thickness depending on the kind of test: 4.5 mm were used for the biaxial loading tests and 

between 7.5 and 9.5 mm for the compression tests. The angle  between the loading direction and 

the fiber direction is variable. Fig. 1 shows a picture of the experimental set-up and the biaxial 

testing rig. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1. Experimental set-up for multiaxial testing of wood panels (from Eberhardsteiner [1]). 

 

Two coordinates systems are considered: the system (x1, x2) in the loading direction, and the system 

(x, y) in the fibre direction (see Fig. 2). The angle  is determined by the fibre orientation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2. Test-piece geometry and coordinates used by Eberhardsteiner (from [1]). 



The relation between the stresses and the coordinate systems are given by the matrix transformation 

equation (Boding and Jayne [2]) 
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where m = cos  and n = sin. Under plane stress conditions t6 = 0. 

Data analysis. A total of 414 tests are considered. These tests are the results of testing under 

different fiber and load orientations. Table 1 summarizes the load ranges tested versus the fiber 

orientations. 

 

Table 1. Range of tested load vs. fiber orientations 

 

(º)
1 (MPa) 2 (MPa) 

min max min max 

0.0 - 49.0 80.0 - 9.9 6.3 

7.5 - 38.0 66.0 - 9.5 6.0 

15.0 - 37.0 39.0 - 8.4 6.0 

30.0 - 19.0 18.0 - 7.7 7.2 

45.0 - 10.0 10.0 - 12.9 10.7 

 

 

The following figures represent the 414 experiments in the material coordinate system. 

This representation of the data shows a much larger material strength in the fiber directions (Fig 3) 

than in the transverse directions, and an elliptical distribution in the projection y xy (Fig. 4). 
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 Fig. 3. Experimental failure locations projected on x y plane. 
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 Fig. 4. Experimental failure locations projected on y xy plane. 

 

Also, the failure locations, with a common fiber orientation (), share a common plane when 

observed from x = y axis (see Fig. 5). 
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 Fig. 5. Failure locations when observed from the direction x = y. Experiments with a 

common  (fiber vs. main loading direction angle) are observed on different planes. 

   φ = 0º      φ = 7,5º     φ = 15º  x φ = 30º     φ = 45º 

   φ = 0º      φ = 7,5º     φ = 15º  x φ = 30º     φ = 45º 



 

Failure criteria. Along the last decades a number of different criteria have being proposed for wood 

failure assessment under multiaxial loading conditions. Most frequently these criteria are closed 

surfaces in the stress space, using polynomial expressions, with coefficients that depend on the 

material strength for the different directions x and y (fiber or longitudinal and the two transverse 

directions to the fibers). Xt and Yt are used for tension; Xc and Yc for their strengths in compression 

and S for their strength under shear. All these values should be previously measured by dedicated 

experiments. 

- Linear models. The simplest model is the lineal one [3] expressed by the equation of a plane 
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This model has been proved to fit the experimental evidence very poorly and will not be analysed 

any further here. 

- Quadratic models. Most failure criteria proposed for wood until now, use ellipsoidal surfaces. A 

few of them are described in the following paragraphs. 

Aicher and Klök´s [3] model consists in an ellipsoid centered at the origin and with their axis lying 

along the coordinate directions, i.e. 
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So, the strengths under tension and compression are considered to be identical, what is not always 

the case for wood samples. 

Tsai-Hill [4] model proposes an ellipsoidal failure surface centered at the origin, but the difference 

with the previous criterion, the elliptical axis on the x and y plane form and angle with the reference 

coordinate axis, so it considers an interaction between x and y stresses. The failure surface is given 

by 
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Norris’s model [5] is non-continuous. i.e. it is not a smooth surface. It postulates that failure will 

take place whenever one of the three following equations are met 
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The quadratic Eq. 5a is similar to Eq. 4. The introduction of the other two equations means that in 

the case of tension-tension and compression-compression (2
nd

 and 4
th

 stress quadrants) the failure 

will be produced whenever one the stressesx or y first reaches their mechanical strength limits. 

Von Mises [6] criterion is similar to the quadratic equation proposed by Norris [5] in Eq. 5a, with 

the only difference that the term corresponding to shear is being multiplied by a factor of 3  
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Van der Put proposed [7] a failure surface for wood as an ellipsoid with their axis oriented along the 

coordinate directions, but its centre is not located at the origin; its centre being on the x y plane. 
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Tsai-Wu’s model [8] is the most general one. Under plane stress conditions, it is expressed as 
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where 1xya  

Ellipsoid center being shifted and their axis form and angle with the coordinate axis, which depends 

on the interaction coefficient axy. This coefficient should be previously measured. Van der Put’s 

model is a particular case of this criterion (axy = 0). 

Van der Put’s and Tsai-Wu’s models consider, in a single equation, different behaviours in tension 

and compression. All the others criteria, presented until here, should be used -at best- with different 

equations/parameters for the different loading modes/quadrants. 

 
Criteria comparison 

In the following the quadratic criteria will be statistically compared versus the experimental results 

provided by Eberhardsteiner for clear spruce wood [1]. 

For this purpose a generic ellipsoid equation is used with six degrees of freedom: two correspond to 

its centre location (x0, y0), the angle  between the ellipsoid axis and the coordinated axis, and three 

more corresponding to the ellipsoid semi-axis (a, b, c). The mean quadratic error will be used to 

optimize those parameter versus the 414 experimental data. 

A very large difference is observed in the fibre direction in comparison with the strength in the 

transverse directions; so, individual differences will be weighted/normalized in relation with their 

vector distances. I.e. the function to be minimized is given by 
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where the circumflex accents indicate the projection, with respect to the origin, of coordinates of the 

individual data being considered, on the ellipsoidal surface. 



The most general case is that of Tsai-Wu, with 6 parameters. The same way is used with the other 

criteria, imposing the ellipsoids their corresponding restrictions, for example, x0 = y0 =  = 0 are 

imposed for the Aicher and Klök’s [3] model, etc. 

Table 2 shows the obtained parameter for the ellipsoids for the different criteria fitted. Semi-axes 

and centre location are expressed in MPa. SS represents the normalized sum of square error, so, it 

has no dimensions. The different models are indicated by its corresponding reference. In bold are 

represented their corresponding restrictions. Note that Tsai-Hill, Norris and Van del Put models do 

not have  as a free parameter because it is a function of the semiaxes of the ellipsoid. 

 

Table 2. Ellipsoid parameters fitted to the different failure criteria 

 

MOD a b c x0 y0  (º) SS 

[3] 77.4 5.3 8.2 0 0 0 28.9 

[4] 79.0 5.3 8.2 0 0 0.1 29.2 

[5] 128.3 5.3 8 0 0 1.4 34.6 

[6] 150.7 5.1 8 0 0 1.1 35.9 

[7] 62.5 5.6 8.3 14.4 -1.0 0 20.2 

[8] 62.5 5.6 8.3 14.4 -1.0 0.2 20.1 

 

Tsai-Wu’s model results in the least error, as it was expected because it also has the largest number 

of parameters (degrees of freedom). A shift of the centre of the ellipsoid is observed with respect to 

the origin of coordinates to the tensile side (x0 = 14.4 MPa), thus the spruce strength in tension is 

larger than under compression. The angle is nearly negligible, and in fact the advantage, with 

respect to Van de Put’s model, which impose a  = 0, is barely appreciable. 

Fig. 6 represents the best fitted ellipsoid and the experiments. 

 

 

 
 

 Fig. 6. Experimental failure locations and best fitted ellipsoid. 

 
 

 

   φ = 0º      φ = 7,5º     φ = 15º  x φ = 30º     φ = 45º 



New failure criterion 

It is quite obvious that woods fails by different micromechanisms when tested under different stress 

conditions: failure in tension parallel to the fibres is produced by the fracture of the fibres, which 

determines its strength; under compression the most frequent failure mechanisms is the buckling and 

kinking of the fibres. Under tension or compression in direction perpendicular to the fibres, the 

failure is produced by debonding of the fibre interfaces without fibre fractures. Eberhardsteiner and 

Mackenzie-Helnwein [9] clearly distinguishes four failure mechanisms after testing clear spruce 

wood panels under multiaxial conditions. Failure is the results of the competition among different 

failure mechanisms, so, the stress space is being limited by different surfaces, ideally representing 

the different failure mechanisms, intersecting each other. The first criteria to be met is which limits 

the acceptable load under this particular loading conditions (let us assume proportional loading 

conditions). Among all the criteria aforementioned, Norris’ [5] is the only one represented by the 

minimum of a set of equations/conditions. 

The introduction of a cut at the tensile tip of the ellipsoid (that represents the failure location in the 

stress space) was already suggested by Norris [5] add a large reduction in the residuals after fitting 

to the experiments. It is here proposed a new failure criterion with two equations defining a 

truncated ellipsoid. From the results to allow for a small angular deviation between the fibre and the 

coordinate axis does not improve the fitting in a significant way, so,  = 0 is imposed. Therefore, 

this model has not a larger number of parameters than the other criteria. Table 3 summarizes the 

value of its parameters and the residual sum of quadratic errors. The equation for the cutting plane 

under tension aligned with the fibres is 

 

tx X .           (10) 

 

As for the previous Table 1, also the values are expressed in MPa. 

 

Table 3. Parameter for the proposed truncated ellipsoid, failure criteria for clear spruce wood (and 

normalized error) 

 

a b c x0 y0 Xt SS 

76.4 5.7 8.2 23.7 -1.0 56.7 19.2 

 

 

Fig. 7 shows the suggested failure surface in this work. The error is reduced by a 5% when 

compared to Tsai-Wu’s model (the best model in Table 1). 
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 Fig. 7. Proposed failure criterion: tensile truncated ellipsoid. 

 

A second (compression parallel to the fibres tip) cut does not improve the fitting in a statistically 

significant way. Taking into account that it will require the introduction of a new parameter and 

additional testing efforts to measure it, this ideas does not results attractive from a practical point of 

view (at least with the available data for the clear spruce wood). 

Fig. 8 shows the projection of the 414 failure locations and the proposed failure criteria projected on 

the y xy plane. A shift of the ellipsoid to the left is observed (to compressive values of y); it means 

that clear spruce is more resistant in compression than to tension, both perpendiculars to the fibres. 
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 Fig. 8. Failure locations projected on y xy plane and proposed failure criterion. 

 

Fig. 9 represents only the experiments for  = 0º and the section of the proposed criterion in the x 

y plane. The failure location might seem not to be optimized to the data represented; note that it is 

optimized to the whole set of experiments (there is a number of them above and bellow the 

represented section) and not only for those experiments with orientation  = 0º. Red and black 

crosses represent the origin and the ellipsoid centres, respectively. A shift is clearly observed 

between both crosses on both directions: x and y. 

If the errors are assumed to be normally distributed with a mean value of  = 0 and a 

variance
1


N

SS
 , it is also possible to plot confidence bounds. Fig. 9 also shows (with dashed 

lines) 95% confidence bounds. So, the probability of failure in between both dashed lines accounts 

for the 95% of the cases. These bounds are useful for safe design purposes. 
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 Fig. 9. Tests with a= 0º, proposed failure criterion and 95% confidence intervals. 

 

Discussion 

Eberhardsteiner [1], by using uniaxial tests, determines a fracture stress Xt = 62.33 MPa for spruce 

wood. In our model this value is reduced to Xt = 56.7 MPa, but it was fitted to all the set of 414 

experiments (not to only uniaxial tensile experiments parallel to the fibers). Even considering only 

the experiments for  = 0º (those in Fig. 9), our value seems in better agreement with the 

experiments than the value proposed by Eberhardsteiner. 

 

Summary 

Different failure criteria have been compared versus the experiments conducted by Eberhardsteiner 

[1] for clear spruce wood under multiaxial stress conditions. The best criterion, fitting the 

experimental results, is Tsai-Wu’s [8] consisting in a free ellipsoid in the stress space x, y,xy, 

with the only restriction of symmetry with respect to the plane xy = 0, so, with six degrees of 

freedom. 

Most criteria consist in a single equation for defining the failure locus. Because the mode of failure 

varies with the loading conditions, ideally different set of equations should be used to account for 

the different failure mechanisms. Only Norris [5] proposed a set of (3) equations, so the failure 

surface has sharp edges and it is not a completely smooth surface. 

In this work a new criterion is proposed consisting in an ellipsoid parallel to the coordinate axis, 

symmetric with respect to the plane xy = 0, and truncated by the plane x = Xt which accounts for 

the tensile fracture of fibers. This model improves the fitting to the experiments conducted by 

Eberhardsteiner [1] in clear spruce wood than the other model described, without increasing the 

number of parameters required by the other criteria. 
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