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Abstract. Voronoi tessellation is employed to generate two-dimensional microstructures of single 

phase and dual interpenetrating phase materials. A novel finite volume based arbitrary crack 

propagation solver implemented in OpenFOAM is described. This solver allows for specification of 

different cohesive zone models for each phase within the microstructure as well as unique cohesive 

zone formulations at the interfaces of any material pair. Initial results suggest that the developed 

model is capable, at least qualitatively, of capturing the features of both inter-granular and trans-

granular fracture. 

 

Introduction  

Over the past quarter century, both Polycrystalline Diamond (PCD) and Polycrystalline Cubic Boron 

Nitride (PCBN) have become the tool material of choice for both the oil and gas industry and high 

speed machining of aerospace alloys. PCD is used primarily in the oil and gas industry whereas 

PCBN is used for high speed machining of ferrous alloys. An ideal cutting tool material should be 

both hard and tough. 

The mechanical performance of PCD and PCBN tools is significantly affected by their 

microstructure [1, 2]. The microstructure is often complex, consisting of grains of different sizes and 

morphologies as well as significant quantities of other phases. For this reason it is important to be 

able to accurately model a material microstructure. Early work by Ghosh and Yunshan [3] and 

Ghosh et al [4] developed a Voronoi cell finite element model (VCFEM). One should also refer to 

significant work by Espinosa and Zavattieri [5, 6] and Zhou and Zhai [7] who analysed dynamic 

fragmentation of ceramic composites by inserting cohesive elements along the grain boundaries. 

More recently, work by Zhou et al. [8] and Zhang et al. [9] have used Voronoi tessellation and 

embedded grain boundary cohesive elements to study inter-granular crack growth on a micro-

structural level. Of particular note is work by Nittur et al. [10] who incorporated a procedure to 

handle the complex contact of fragmenting grains and fracture surfaces. 

 

Microstructure Generation 

Consider a pair of seed points, a and b, in ℝ2
 as shown in Figure 1. The perpendicular bisector of ab 

divides the plane into two halves. All points in the plane on one side of the perpendicular bisector 

are closer to a than to b, while all points on the opposite side of the perpendicular bisector are closer 

to b than to a. Next consider a third seed point, c. The perpendicular bisectors of ac and bc can be 

drawn as before. There are now three regions surrounding each seed point. Each region coincides at 



the circumcentre of abc. Repeating this procedure divides ℝ2 
into a series of polygons known as a 

Voronoi diagram. A typical Voronoi Tessellation with 100 random seed points distributed randomly 

on the region 0 < x,y < 1 is given in Figure 2. As Voronoi tessellation is defined on the entire plane, 

special care has to be taken with any seed points close to the boundary, which do not have sufficient 

neighbours to define a closed polygon. 

 

 

Fig. 1. Schematic showing the Voronoi tessellation of ℝ2
 into four regions. 

 

In order to study the effect of grain size and distribution, Voronoi tessellation was used to generate 

random microstructures of both PCD and PCBN. First, the boundaries of the solution domain are 

specified. Next the nominal grain size and aspect ratio, i.e. columnar or equiaxed is chosen. The 

seeds are then distributed uniformly throughout the domain according to the previous choices. Each 

seed is then allowed to displace from the starting position according to a bounded random 

distribution. This ensures that no two seed points can get too close to each other and subsequently 

generate a final microstructure that is physically unrealistic. This also limits both the minimum and 

maximum grain size of the resultant microstructure. The degree of displacement of the seed points 

from the uniform seed arrangement is governed by two randomly distributed variables, a distance r, 

which is normally distributed and an angle , which is a uniformly distributed random variable 

between 0 and 2. The resultant seed points are then used to obtain the Voronoi tessellation of the 

solution domain. The degree to which each point is allowed to deviate from the initial position, r, 

can be varied so as to control the regularity of the microstructure. Obviously points that are allowed 

to move a large distance from the initial position will generate an irregular microstructure with a 

large variance in grain area. Points that are constrained to remain close to the initial positions 

generate more regular microstructures. The effect of regularity of the final microstructure is shown 

in Fig. 2. 

 

To generate an interpenetrating microstructure, the Voronoi tessellation is applied as before. As an 

additional step, each Voronoi tile is then reduced in area around the circumcentre of the tile until the 

desired area fraction of the second interpenetrating phase is met. 

 

Finite Volume Method 

Over the last number of years the Finite Volume (FV) method has become established as an 

alternative to the Finite Element Method for the solution of problems involving stress analysis. The 

method was first developed for the solution of solid mechanics problems by Demirdzic and co-

workers [11–15]. Ivankovic and co-workers have applied the FV method successfully to the solution 

of both fracture problems [16–19] and fluid structure interaction problems [20, 21]. All of the 



procedures and simulations in the current work were implemented and conducted using 

OpenFOAM-1.6-ext [22, 23]. 

 

 

 
(a) Grain area density 

 
(b) Regular microstructure   (c) Irregular Microstructure 

Fig. 2. Effect of regularity on the grain size distribution of the final microstructure. 

 

The arbitrary crack propagation model implemented allows prediction of crack propagation along 

internal control volume faces [24]. An internal control volume face at which the failure criterion is 

satisfied is turned into a pair of cohesive zone boundary faces. The traction force specified between 

these cohesive zone faces is governed by a cohesive zone model.  

The cohesive zone model works on the basis that all the damage processes taking place locally 

ahead of the crack tip can be described by a unique stress-displacement relationship as shown in Fig. 

3 (a). For the simplest models, two parameters are required to fully describe the model. These are 

the fracture energy GIc and the maximum cohesive strength max. According to the cohesive zone 

model the traction between cohesive zone faces is a function of the separation distance between the 

faces. In case of mode I (opening) crack, only normal separation distance is considered and the 

traction-separation law defines normal cohesive traction between cohesive faces as a function of 

normal separation distance. An initially rigid general traction-separation law is shown in Fig. 3 (b). 

Once the critical traction, max is reached,  decreases from the critical traction to zero traction 

according to the specified traction-separation curve. When the critical normal separation c is 

reached, fracture is assumed to have taken place and the cohesive faces are thereafter treated as 

traction-free faces. 

Direct measurement of the shape of the cohesive law has proven to be very difficult, especially for 

brittle materials [25, 26]. Both Chandra et al. [27], Rots [28] and Murphy and Ivankovic [24] have 



shown that when the damage stems from micro-cracking, the shape of the traction-separation law is 

important and typically a linear formulation describes these materials better than a Dugdale law. 

      
(a) Damage zone ahead of a growing crack  (b) General form 

Fig 3: Traction separation law 

 

Results 

Fig. 4 presents generated microstructures for four different starting grain sizes for a single phase 

material, typical of a polycrystalline diamond microstructure. Each microstructure is 100 m by 100 

m. An initial notch has been incorporated into each microstructure of length 10 m. A tensile load 

is applied by imposing a symmetric velocity at the top and bottom edges of the model.  

 

    
(a) dnom = 12.5 μm (b) dnom = 10 μm  (c) dnom = 6.7 μm  (d) dnom = 5 μm  

Fig 4. Four different single phase SENT microstructures generated with different grain sizes, dnom. 

The SENT specimen is 100 μm by 100 μm and the initial notch is 10 μm. 

 

The crack path of each microstructure is given in Fig. 5. For the purposes of initial testing the grains 

were treated as elastic isotropic material with E = 800 GPa,  = 0.12 and  = 3,000 kg/m
3
. Cohesive 

properties of the grain was set to max = 1,000 MPa and GIc = 100 J/m
2
. Cohesive properties of the 

interface were set to be 60% of the grain properties, i.e. max = 600 MPa and GIc = 60 J/m
2
. The 

CZM shape was linear in all cases. This ensured that a degree of both trans-granular and inter-

granular cracking would be observed. Each simulation was carried out in plane strain and only 

Mode I fracture was allowed. The loading rate was set to 0.01 mm/min, giving a strain rate of 1.7e-3 

/sec.  

 

      



(a) dnom = 12.5 μm  (b) dnom = 10 μm   (c) dnom = 6.7 μm   (d) dnom = 5 μm 

Fig 5. Final crack paths of single phase microstructure 

 

Fig. 6 presents the results of a fracture test on a dual phase microstructure, typical of PCBN 

microstructures. The elastic and cohesive properties of the grain are as before, while the elastic 

properties of the surrounding binder material are: E = 300 GPa,  = 0.2 and  = 3,500 kg/m
3
. The 

cohesive properties for the binder material and the interface are the same in this case, max = 300 

MPa and GIc = 100 J/m
2
. This sample is loaded at both low rate, 1.7e-3 /sec, and high rate, 17 /sec. 

Multiple bifurcations of the main crack are observed at high rates. It is also of interest to note that 

there is not significant trans-granular cracking at the lower strain rate while many of the much 

stronger grains are cleaved at the higher rate of loading. 

 

Fig. 7 is a scanning electron micrograph of the fracture surface of a PCBN material fractured in 

three point bend at a low strain rate. The notch tip is located at the bottom of the image and the 

crack propagation direction is towards the top of the image. The fracture is predominantly inter-

granular and the crack path can be seen to be tortuous around the grains. This phenomenon is 

predicted quite well in Fig. 6. Fig. 8 presents a micrograph of the same PCBN material fractured at a 

high strain rate. Notch tip location and crack propagation direction are as before. There is 

significantly more transgranular cracking evidenced by the stepping of grains in the image. 

Additionally there is evidence of micro-cracking suggesting that secondary crack front may have 

occurred during the fracture process. 

 

 
Fig 6. Crack paths in dual phase interpenetrating microstructure at low rate (white) and high rate 

(yellow). Bifurcation of the crack is observed at high strain rates. 

 



  
Fig 7. Typical fractograph of dual phase interpenetrating microstructure (PCBN) fractured at low 

rate. The fracture mode can be predominantly described as intergranular. 

 

 
Fig 8. Typical fractograph of dual phase interpenetrating microstructure (PCBN) fractured at high 

rate. Both intergranular and transgranular fracture can be observed. 

 

 

Conclusion 

A technique based on work by previous researchers for generating statistically representative two-

dimensional microstructures for a variety of materials has been presented. This technique can 

produce both single and multi-phase microstructures. 

A multi-material crack propagation solver developed in OpenFOAM using the Finite Volume 

method was used to examine the fracture properties of a number of different microstructures. The 



model was able to quantitatively predict both inter-granular and trans-granular fracture in both 

single phase and multi phase crystalline materials. The model was also able to predict crack 

bifurcation at higher rates of loading. The model predictions for a dual phase interpenetrating 

material agree with micrographs of fracture surfaces from experiment. 

Future work will concentrate on extending the Voronoi tessellation method to 3-dimensions as well 

as refining the finite volume crack procedure to handle thermally initiated cracks. 
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