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Abstract. A general approach to realization of models of elasticity, plasticity and fracture of 

heterogeneous materials within the framework of discrete element method (DEM) is proposed in 

the paper. It is based on building many-body forces of discrete element interaction, which provide 

response of element ensemble correctly conforming to the response of simulated solids. Developed 

formalism makes possible realization of various rheological models in the framework of DEM to 

study deformation and fracture of solid-phase media of various natures. 

 

Introduction  
An important direction in fracture mechanics is development of numerical methods and their 

application to study dynamics and peculiarities of fracture of heterogeneous materials and structures 

under complex loading conditions. A perspective and intensively developed representative of 

numerical methods used to solve fracture mechanics problems is a discrete element method (DEM) 

[1-2]. In the framework of “conventional” particle methods simulated material is considered as an 

ensemble of interacting particles (elements) having finite size and predefined initial shape that can 

change as a consequence of loading. Evolution of an ensemble is defined by solution of the system 

of Newton-Euler motion equations: 
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where iR


 and i


 are radius-vector and rotation angle of the particle i, mi and iĴ  are particle mass 

and moment of inertia, 
ij

nF


 and 
ijF


 are forces of central (normal) and tangential interaction of 

considered element i with neighbor j, ijM


 is momentum of force, Ni is a number of neighbors 

(conventionally only nearest neighbors of element i are taken into account).  

A fundamental feature of the formalism of DEM is an inherent capability of discrete element to 

change surroundings (interacting neighbours). This allows considering the DEM as an attractive 

numerical technique to be used for direct modeling multiple fracture accompanied by formation and 

mixing of large number of fragments. Note that coupling (adhesion) of fragments can be included in 

the model as well. This capability is taken into account by means of change of the state of the pair 

of discrete elements (“linked” pair  “unlinked” pair, Fig. 1). 

In spite of described advantage, at present time field of application of DEM is limited mainly by 

study of deformation and fracture of brittle materials and weakly bonded media [1-3]. These 

limitations are concerned with insufficient development of mathematical models of interaction of 

discrete elements. 



Therefore one of fundamental problems in 

DEM is formulation of interaction 

potentials/forces (namely of ij
nF


 and ijF


 in 

Eq. 1), which provide response of element 

ensemble conforming to response (including 

fracture) of consolidated solids with various 

rheological properties. An approach to 

solving this problem with use of many-body 

interaction forces is proposed in the present 

paper. The approach is realized within the 

framework of two-dimensional version of the movable cellular automaton (MCA) method [4-5], 

which integrates the possibilities of DEM and another discrete numerical technique, namely of 

cellular automaton method. 

 

Formulation of discrete element interaction in many-body form  

The main idea of proposed approach is to represent element interaction forces in the structural form 

with separated pair-wise and volume-dependent parts: 
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where pair-wise constituents ij
pairF


 depend on spatial position/displacement of element i with respect 

to nearest neighbor j, volume-dependent constituent iF


 is concerned to combined influence of 

nearest surroundings of the element. When simulating locally isotropic medium the volume-

dependent contribution can be expressed in terms of pressure Pi in the volume of discrete element i: 
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where Sij is square of area of interaction (contact) of elements i and j, ijn


 is a unit vector directed 

along the line between mass centres of considered elements, A is a parameter. In such formulation 

the right part of the Eq. 2 can be divided into sum of central ( ij
nF


) and tangential ( ijF


) constituents: 
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where ij
npairF ,  and ij

pairF ,  are central and tangential components of pair-wise interaction force that 

depend on the values of element-element overlap hij and relative shear displacement 
shear
ijl  [5]. 

It is seen from Eq. 3 that an important problem of building many-particle interaction forces is 

definition of local value of pressure (Pi) in the volume of discrete element. This parameter can be 

calculated with use of diagonal components of average stress tensor 
i
  in the volume of the 

element i (   3i
zz

i
yy

i
xx

i
meaniP  ). This tensor is defined through surface forces (forces 

ij
nF  and ijF  of interaction of the element with surroundings). In the considered case of plane motion 

of three-dimensional objects (quasi-two-dimensional approximation) an expression connecting 
i
  

and interaction forces is written as follows [2,5]: 
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Fig.1. Schematic representation of switching 

between linked (at the left) and unlinked (at the 

right) states of the pair of discrete elements i and j. 
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where , = x,y (XY is a plane of motion); Vi is a current value of the volume of element i; qij is a 

distance from mass centre of element i to the central point of area of interaction (contact area) with 

neighbour j; ij, is an angle between the line connecting mass centres of interacting elements i and j 

and axis  of laboratory system of coordinates. 

It follows from Eqs. 2-5 that element interaction forces ij
nF  and ijF  are linearly concerned with 

local values of stress tensor components i
  and are mutually integrated through pressure Pi. 

Analysis of these relationships leads to the conclusion that expressions for forces of interaction of 

elements, which model a medium with certain rheological characteristics, could be directly 

reformulated from constitutive equations of modeled medium (equations of state). Below is a 

derivation of such expressions for locally isotropic elastic-plastic materials. 

 

Discrete element interaction for modeling elastic-plastic medium 

Stress-strain state of isotropic linearly elastic medium is described on the basis of generalized 

Hooke's law. The following notation of this law will be used in the paper: 
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where , = x,y,z;  and  are diagonal components of stress and strain tensors;  and  are 

off-diagonal components;   3zzyyxxmean   is mean stress; K is bulk modulus; G is shear 

modulus. It is seen that the form and the matter of Eq. 6 for diagonal and off-diagonal stress tensor 

components are analogous to relations in right part of Eq. 4 describing connection between total and 

pair-wise parts of normal and tangential forces of interaction of discrete elements. This leads to the 

simple idea to write down expressions for force response of automaton i to the impact of the 

neighbor j by means of direct reformulation of Hooke’s law relationships: 

 

 

 

















 


jii

ij

ij

ij

i
mean

i

i
jii

ij

ij
n

ij

G
S

F

K
G

G
S

F

2

2
12

,        (7) 

 

where Gi and Ki are shear and bulk elastic moduli of material filling the element i, i(j) and i(j) are 

contributions of the element i to the total values of normal and shear strains of the pair i-j 

(    
0/ ijijijji rh  and    

0/ ij
shear
ijijji rl ; 

0
ijr  is initial distance between mass centers of 

elements i and j), mean stress i
mean  is calculated using Eq. 5. Note that proposed Eq. 7 for force of 

element response to the impact of the neighbor j are well-founded. Thus, by substituting Eq. 7 in 

Eq. 5 it is easy to show that proposed expressions for respond force automatically provide 

implementation of Hooke’s law for components of average stress ( i
 ) and strain ( i

 ) tensors in 

the volume of element i [5]. 

Proposed Eq. 7 make it possible to calculate central and tangential interaction of discrete elements, 

whose ensemble simulates isotropic elastic medium. Taking into account the need to implement 

Newton's third law for interacting pairs of discrete element (ij=ji and ij=ji) and the need to 



distribute element contributions to normal and shear strains of the pair i-j the expressions for 

specific interaction forces can be written as follows: 
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Here, relations for calculating the central and tangential interaction forces are written in incremental 

fashion (in hypoelastic form). 

It should be noted that in two-dimensional formulation of the problem approximations of plane 

stress or plane strain state are widely used. A similar approach is used in described model [5]. 

An important advantage of proposed approach to building many-body interaction of discrete 

elements is a capability to realize various models of elasticity and plasticity within the framework 

of different realization of DEM (including MCA method). In particular, a model of plastic flow 

(incremental plasticity) with the criterion of Mises was implemented to simulate deformation of 

isotropic elastic-plastic media. For this purpose, radial return algorithm of Wilkins [6] was adopted 

to discrete element approach. Being formulated in terms of stress, for components of average stress 

tensor in the volume of discrete element i it will take the following form (Fig. 2): 
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where , = x,y,z;  
i  are corrected (returned) average stress 

tensor components; 
i
  are stress tensor components, which 

result from solution of elastic problem (Eq. 8) at the current 

time step;  is the Kronecker delta; ii
pliM int  is current 

value of stress drop coefficient for discrete element i; i
pl  is 

current radius of von Mises yield circle for the element i; i
int  is 

stress intensity calculated with use of average stresses 
i
  after 

solving elastic problem at the current time step. 

By analogy with the elastic problem the expressions for 

correction of specific central and tangential forces of response 

of the element i (ij and ij) are derived by direct reformulation 

of Eq. 9 for average stresses: 
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where ij and ij are specific interaction forces, which result from solution of elastic problem at the 

current time step. It is easy to show that substitution of Eq. 10 in Eq. 5 for average stress tensor 

automatically provides reduction of its components to yield circle for the element i [5]. This 

demonstrates the correctness of the proposed model.  

Note that independent use of the expressions Eq. 10 for interacting elements i and j can lead to 

 
 

Fig.2. Schematic 

representation of functioning of 

radial return algorithm of 

Wilkins. Here el is stress 

intensity after elastic problem 

solution at the current time step. 

 



unequal values of respond forces ( jiij   and jiij  ) in the pair i-j in case of different 

coefficients Mi and Mj and mean stresses i
mean  and j

mean . In view of the need for 

implementation of Newton’s third law scaling of specific interaction force in each pair i-j has to be 

done with use of “unique” values of stress scaling coefficient Mij and mean stress ij
mean : 
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where rij is current distance between mass centers of elements i and j. As this takes place, scaling of 

forces of interaction of discrete elements i and j will take the following form: 
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In considered two-dimensional statement of the problem scaling of stress i
zz  is carried out with 

use of Eq. 10 with taking into account peculiarities for approximations of plane strain and plane 

stress state.  

Testing results have shown that proposed model of elastic-plastic interaction of discrete elements 

provides good agreement of spatial distribution of stresses and strain in the ensemble of discrete 

elements modeling elastic-plastic medium with corresponding analytical solutions as well as with 

results of numerical simulation by means of commercial software ANSYS/LS-DYNA. 

 

Calculation of fracture criteria in discrete element method 

Potentialities of the developed approach to building many-body interaction of discrete elements 

make it possible to apply various parametric “force” fracture criteria (Huber-Mises-Hencky, 

Mohr-Coulomb, Drucker-Prager and so on) within the formalism of DEM. In DEM fracture is 

modeled by means of change of the state of the pair of discrete elements (transition from “linked” 

state of the pair to “unlinked” state with a possibility of further contact interaction of elements, 

Fig. 1). One of the ways of application of parametric fracture criteria as criteria of pair bond 

breaking is to determine local values of stress tensor components at the area of interaction (contact 

area) of considered pair i-j (hereinafter denote this tensor as ij


 ). In the local coordinate system 

XY of the pair (Fig. 3) components 
ij

yy   and 
ij

yx   for the pair i-j are numerically equal to specific 

forces of central (ij) and tangential (ij) interaction of the elements (these forces are applied to the 

contact area Sij). Other components ( ij
xx   and ij

zz  ) of stress tensor in the local coordinate system 

XY are defined on the basis of linear interpolation of corresponding values ( i
xx   and j

xx  , i
zz   and 

j
zz  ) for elements i and j to the area of interaction: 
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where 
i
  and 

j
  are components of average stress tensor in the volume of elements i and j in 

the local coordinate system of the pair.  

 



Components ij


 , thus defined, can be used to calculate necessary 

invariants of stress tensor which then can be used to calculate current 

value of applied criterion of pair fracture. In particular, below the 

examples of bond breaking conditions in the pair i-j with use of Huber-

Mises-Hencky and Drucker-Prager criteria are shown: 
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where c is corresponding threshold value for considered pair (value 

characterizing strength of chemical bond), a is a ratio of material 

compressive strength to tensile strength, ij
int  and ij

mean  are invariants 

of stress tensor ij


 . 

Distinctive features of interaction of “unlinked” (i.e. contacting) elements i and j, among other 

things, are the lack of resistance to tension (pair is considered as interacting only when ij0) and 

limited value of the force of tangential interaction. Maximum allowed value of tangential force (ij) 

in “unlinked” pairs is determined by applied model of friction of surfaces of interacting elements 

(Amonton’s law of friction, model of Dieterich [7] and so on). 

 

Study of crack growth dynamics with DEM 

Testing of the developed formalism has shown its large potentiality to study problems connected 

with crack formation and development in solids. This can be demonstrated by the example of DEM-

based numerical study of features of mode I (tensile) and mode II (shear) unstable crack 

propagation in brittle materials. In the framework of conventional fracture mechanics predictions a 

brittle crack cannot propagate faster than the Rayleigh wave speed VR. Nevertheless recent 

researches including numerical as well as experimental studies have shown a possibility of faster 

propagation of shear cracks [8,9]. This problem was analyzed with use of above described models 

of element interaction and pair bond breaking. 

Simulation results have shown that in mode I fracture two vortexes with opposite rotation directions 

are formed in the front of propagating crack bilaterally along crack propagation line (Fig. 4a). As is 

shown in Fig. 4a, back parts of vortexes are confined to the crack tip. Opposite rotation directions of 

vortexes provide for tensile deformation of the tip in the direction normal to the crack line. In linear 

elastic brittle material such vortexes propagate with near Raleigh speed VR (or slower) that 

determines maximum possible velocity of mode I crack development (Fig. 4b). 

 

  a    b 

 

Fig.4. Velocity field near tip of mode I crack (a) and dependence of instantaneous values of 

crack velocity on crack length (b). Arrow in (a) shows crack line and propagation direction, arrow 

tip points to crack tip. Crack velocity V in (b) is normalized to Raleigh wave speed VR. 
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In case of mode II fracture at the initial stage of crack growth a vortex is formed in front of 

propagating crack. The center of vortex is situated in the vicinity of crack tip (Fig. 5a). As in mode I 

fracture, the maximum speed of vortex propagation in mode II is limited by Raleigh speed that 

determines limiting velocity of shear crack propagation. Nevertheless it is seen that in back part of 

the vortex velocity fields in lower and upper parts (with respect to crack line) are asymmetrical 

(Fig. 5a). In particular, velocities of elements near upper crack face in the vicinity of the crack tip 

are slightly larger than near lower crack face and therefore are oriented more vertically. Such 

asymmetry of velocity and displacement field near crack tip leads to asymmetry of stress 

distribution in front of growing crack. This asymmetry progressively increases with crack 

propagation and leads to stress concentration increase in front of the crack tip as well as to size 

increase of the area of peak stresses in front of crack. Therefore as crack grows, it steadily 

accelerates. Increasing asymmetry of velocity and displacement fields in front of the crack tip 

finally results in degradation of the local vortex and its transformation in area of local curvature of 

global longitudinal velocity field (Fig. 5b). Such kind of configuration of velocity field in the 

vicinity of crack tip provides for possibility of crack growth with velocities up to longitudinal 

elastic wave speed VP. So, as crack propagates, its velocity continues to increase up to values close 

to Vp (Fig. 6a). Size of the area of peak stresses in front of the shear crack and stress concentration 

in this area becomes invariable as shear crack propagates with maximum velocity. 

 

 a   b 

 

Fig.5. Velocity fields near tip of mode II crack at the stages of crack propagation with near-

Raleigh velocity (a) and near-longitudinal wave velocity (b). Arrows show crack line and 

propagation direction, arrow tips point to crack tip.  

 

  a    b 

 

Fig.6. Dependences of instantaneous values of crack propagation velocity on crack length:  

a) crack develops from free surface; b) crack is initiated inside the sample far from free surfaces. 

Crack velocity V is normalized to longitudinal wave speed VP.  

 

Simulation results allowed authors to reveal peculiarities of mode II crack acceleration dynamics in 

cases of crack initiation at free surface and far from it (in the bulk of material). In the first case 



nearly linear crack speed increase to maximum value takes place (Fig. 6a). In the second case (crack 

initiated under the condition of laminar shear deformation in the bulk of material) acceleration 

proceeds in two stages (Fig. 6b). At the first stage fast velocity increase to Raleigh speed VR takes 

place. Then crack develops with this velocity for some time (area I in Fig. 6b). At the second stage 

crack velocity further increases to the limiting value close to longitudinal wave speed VP and then 

becomes constant (area II in Fig. 6b). Described difference in dynamics of acceleration of incipient 

shear crack is concerned to the fact that near the free surface of the sample an area of global 

curvature is formed under the condition of shear deformation. This area is characterized by an 

increase in tangential stress up to a certain depth. Therefore a shear crack generated at free surface 

and growing inside the material initially propagates through an area of increasing tangential 

stresses. This provides for fast increase of crack velocity to maximum value. When shear crack is 

generated in the bulk of material, at the initial stage of crack development it forms such area of 

“global” curvature and then accelerates to maximum propagation velocity. Formation of this takes 

place gradually during the course of crack growth. This explains the achievement of the limiting 

value of the crack growth rate for large values of crack length (Fig. 6). 

 

Summary 

A solution to the problem of modeling the consolidated elastic-plastic media by ensemble of 

discrete elements is proposed in the paper. This solution is based on use of many-particle 

interaction forces and on determination of volume-dependent constituent of interaction via 

calculation of components of average stress tensor in the volume of discrete elements. Final 

relations for central and tangential interaction forces are derived from constitutive rheological 

equations for modeled medium. An important advantage of the proposed expressions for element 

interaction is a possibility of implementation of various models of elastoplasticity or 

viscoelastoplasticity (which are conventionally written in terms of stress/strain tensor components) 

in terms of element interaction force and displacement increments. 

Another important advantage of the developed formalism of discrete element interaction is a 

possibility to directly apply complex multiparametric fracture criteria (Drucker-Prager, Mohr-

Coulomb etc.) as criteria of interelement bond breakage. The use of these criteria is very important 

for correct modeling of fracture of complex heterogeneous materials of various nature. 

At the present time described models of interaction of discrete elements are approved and widely 

applied to study fracture-related problems at different scales from nanoscopic to macroscopic one, 

whose investigation by conventional numerical methods of continuum mechanics is difficult. The 

problems of this type include, for example, physical and mechanical processes in contact patches of 

technical and natural frictional pairs [5,10], multiple (quasi-viscous) fracture of porous ceramics or 

composite coatings and so on. 
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