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Abstract. An analysis of plane-strain bending at large strains for a rigid viscoplastic incompressible 

material model including a damage evolution law is performed. The Mises-type yield criterion is 

adopted. The yield stress depends on the equivalent strain rate (the quadratic invariant of the strain 

rate tensor). The fracture criterion is based on a critical value of the damage parameter. For reasons 

of space, the present paper is restricted to analytical treatment of the boundary value problem which 

enables the original system of equations to be reduced to two simple hyperbolic equations whose 

numerical solution can be found with no difficulty and with a high accuracy.  

 

Introduction 
Pure plane-strain bending at large strains is one of the classical problems in plasticity theory. A 

number of analytical and semi-analytical solutions have been proposed for various rigid- and 

elastic- plastic models in the literature [1-7]. A unified method for isotropic incompressible 

materials has been proposed in [8]. The method has been extended to a class of anisotropic 

materials in [9] and has been successfully used for springback calculation in the case of elastic-

plastic non-linear hardening materials in [10]. In particular, it has been shown in [9, 10] that an 

effect of elasticity at large strains is negligible, unless the stage of unloading is of interest. 

Therefore, a rigid viscoplastic model is adopted in the present paper. The paper deals with an 

extension of the approach to analysis of plane-strain pure bending proposed in [8] to include a 

damage evolution equation in the case of rigid viscoplastic incompressible materials. The effect of 

viscosity is introduced assuming that the yield criterion depends on the equivalent strain rate (the 

quadratic invariant of the strain rate tensor). The damage evolution equation used is similar to those 

proposed in [11-14] among others. A similar approach for strain-hardening materials has been 

developed in [15]. An advantage of the approach chosen is that the original boundary value problem 

is reduced to rather a simple system of two partial hyperbolic differential equations written in 

characteristic coordinates. The key point of this successful transformation is a simple mapping 

between Lagrangian and Eulerian coordinate systems found in [8]. Numerical methods for such 

systems are well documented and the numerical solution can be found with a high accuracy. 

 

Kinematics 

The approach proposed in [8] is based on the mapping between Eulerian Cartesian coordinates (x, y) 

and Lagrangian coordinates ( ,  ) in the form 
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where H is the initial thickness of the sheet, s is an arbitrary function of a, a is a function of the time, 

t, and 0a   at 0t  . At the initial instant, 0a  , 



 

1 4s  .  (2) 

 

Substituting Eq. 2 into Eq. 1 and applying l’Hospital’s rule gives x H  and y H  at the initial 

instant when the shape of the specimen is the rectangle defined by the equations x H  , 0x   and 

y L  . The initial shape and the Cartesian coordinate system are shown in Fig. 1. It is possible to 

assume, with no loss of generality, that the origin of this coordinate system is located at the 

intersection of the axis of symmetry and surface AB throughout the process of deformation. An 

intermediate shape is also shown in Fig. 1. It is obvious that 0   for AB and 1    for CD 

throughout the process of deformation. According to Eq. 1, any intermediate shape is determined by 

two circular arcs, AB and CD, and two straight lines, AD and CB. These circular arcs coincide with 

coordinate curves of the plane polar coordinate system r defined by the following transformation 

equations 
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r s
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Geometric parameters of the shape at any instant are given by (Fig. 1) 
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where ABR  is the radius of surface AB, CDR  is the radius of surface CD, and h is the current 

thickness of the sheet.  

 

          
 

Fig. 1. Coordinate systems, initial shape and intermediate shape in pure bending. 

 

It is possible to verify by inspection that the Lagrangian coordinates coincide with trajectories of the 

principal strain rates and that the mapping given by Eq.1 satisfies the equation of incompressibility 

at any instant. It will be shown in the next section that the assumption that the Lagrangian 

coordinates coincide with the trajectories of the stress tensor allows one to solve the stress equations. 

In the case under consideration these two conditions (coincidence of the trajectories for the 

principal stresses and principal strain rates and the equation of incompressibility) are equivalent to 

the associated flow rule of the classical rate formulation of plasticity theory.  

The strain rate components can be found from Eq. 1 and, then, the position of the neutral line is 

determined by 
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the equivalent strain rate by 

 

 

d d d

d3
eq

s a a

ta s










         (6) 

 

and the equivalent strain by 
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in regions 1, 2 and 3, respectively. In region 1, 0 1 2   , the principal strain rate 0   (and 

0  ) during the entire process. In region 3, 1 f

n    , the principal strain rate 0   (and 

0  ) during the entire process. A property of all curves const   in region 2, 1/ 2f

n    , 

is that each of these curves coincides with the neutral line at one time instant. Consider any -curve 

of this class and denote ca  the value of a at which the curve coincides with the neutral line. Then, 

0   ( 0  ) at ca a  and 0   ( 0  ) at ca a  for this curve. Obviously, the time 

instant at which the sign is changed depends on the curve such that  c ca a  . The corresponding 

value of s will be denoted by  cs   where    c cs s a     . These values of  ca   and  cs   

are involved in Eq. 7. Also, f

n  is the  - coordinate of the neutral surface at the end of the process. 

If  s a  were known, Eq. 5 would determine  ca   and, therefore,  cs  . Thus,  s a  is the only 

unknown function in the analysis of kinematics and this function should be found from the analysis 

of stress and damage. 

 

Stress Analysis and Damage Evolution 

The only non-trivial equilibrium equation in the plane polar coordinate system  ,r   in terms of the 

radial and circumferential stresses has the form 

 

0r r

r r

   
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
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It is obvious that r    and    . The plane-strain yield condition in the case under 

consideration is 
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2
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3
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where the upper sign corresponds to the region 1 n     and the lower sign to the region 

0n   . Also, the function  eq  satisfies the condition  0 1  , 0  is the yield stress in 

tension at 0eq  , and D is the damage parameter. Using Eq. 3 it is possible to replace r and 



 

differentiation with respect to r with   and differentiation with respect to   in Eq. 8. Then, using 

Eq. 9, 
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The function  eq  should be prescribed and eq  can be excluded by means of Eq. 6. The 

boundary conditions on the radial stress are 

 

 0r         (11) 

 

for 1    and 0  . Since there are the two boundary conditions for the differential equation of 

first order, the function  s a  and, consequently, the neutral line position (see Eq. 5) should be 

found from the solution to Eq. 10 simultaneously with constant of integration. Also, the radial stress 

must be continuous across the boundary of the aforementioned regions 1, 2, and 3. Equation (10) 

should be supplemented with a damage evolution law. A wide class of phenomenological damage 

evolution laws can be written in the form 
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where the overdot denotes the convected derivative. In the case of plane strain deformation, the 

flow rule associated with the yield condition Eq. 9 gives   2z r       . Since the shear 

stresses in the cylindrical coordinate system vanish, the equivalent stress involved in Eq. 12 is given 

by  3 2eq r     . In the Lagrangian coordinates, Eq. 12 can be rewritten, with the use of Eq. 

6, as 
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The initial distribution of the damage parameter should be prescribed. A widely used assumption is 

 

 0D D       (14) 

 

for 0a  . Here 0D  is constant. Using Eqs. 6, 7, and 9 the right hand sides of Eqs. 10 and 13 can be 

represented as functions of a,  , r  and D. Therefore, using the boundary conditions (11) the 

solution to these equations can be in general found numerically. Once the solution for the damage 

parameters and stress components has been found, the bending moment per unit length is 

determined by integration [8] 
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At the initial instant, the polar coordinate system  ,r   transforms to the Cartesian coordinate 

system  ,x y . In order to facilitate numerical solution of Eqs. 10 and 13 for the initial stage of the 

process, the second derivative 2 2d s da  at the initial instant can be found analytically. 

 

Solution for the Initial Stage of the Process. 

Since the distribution of the damage parameter is uniform at the initial instant, 1 2n    at 0a  . 

Then, it follows from Eq. 5 that 

 

 1 2ds da         (16) 

 

at 0a  . Moreover, at the initial instant  
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The function  0   determines the through-thickness distribution of the function  eq  at the 

initial instant. Thus, it follows from Eqs. 2, 6 and 16 that  
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It is seen from this equation that the function  0   is symmetric relative to the neutral line. 

Therefore, it follows from Eq. 17 that 

0

1

0d 


 , as it should be in pure bending. The solution of 

Eq. 10 in the range 1 n     satisfying Eq. (11) at 1    can be written in the form 
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where z is a dummy variable of integration. Then, the radial stress acting at n   is 
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The solution of Eq. 10 in the range 1 2n     satisfying the boundary condition 32r   at 

n   can be written in the form 
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Then, the radial stress acting at 1 2    is 
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Finally, the solution of Eq. 10 in the range 1 2 0    satisfying the boundary condition 21r   

at 1 2    can be written in the form 
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Substituting the boundary condition (11) at 0   into Eq. 23 gives 
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Using Eqs. 5, 20 and 22 it is possible to transform Eq. 24 to 

 

 1 2 3 0I I I   ,      (25) 

 

where 
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Differentiating each of these integrals with respect to a and, then, putting 0a   and taking into 

account Eqs. 2, 14, and 16 give 
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Since  eq  is a prescribed function of eq , the derivative eqd d  at 0a   can be found as a 

function of   by means of Eqs. 2, 6 and 16. The derivative eq a   at 0a   can be evaluated 

using Eq. 6. It is convenient to introduce the new variable   by the equation 1 2   . Then, 
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It is also convenient to introduce the following notation 
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Differentiating Eq. 25 with respect to a , using Eqs. 27 and Eq. 29, and replacing   with   yield  
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It is seen from Eq. 28 that  0   is an even function of  . It follows from Eq. 6 that eq  at 0a   is 

also an even function of  . Therefore, eqd d  being a function of eq  is also an even function of 

  at 0a  . Finally, the definition for the function    given in Eq. 29 shows that it is an even 

function of  . Then, 

 

          
1 2 1 2 1 2 0

1 1

0 0 0 1 2

1
2 0

2
d d d d       





  
           

  
      (31) 

 

where  1   is the anti-derivative of   . Analogously, it is seen from Eq. 18 that the function 

 0   involved in Eq. 30 can be replaced with an even function of  , say  1  . Then, the anti-

derivative of the function  1   is an even function of  , say  2  . Therefore, 

   2 21 2 1 2     and 
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Substituting Eqs. 31 and 32 into Eq. 30 leads to 
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In general, the derivative D a   at 0a   can be found from Eq. 13 with no difficulty since the 

distribution of stresses is given by Eq. 17, 0eq   and 0D D  at 0a  . Therefore, the right hand 

side of Eq. 33 can be evaluated and, then, using Eqs. 2 and 16 the function  s a  at the initial stage 

of the process can be approximated by 
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In the case of many damage evolution laws the function  , ,eq eq D    involved in Eq. 12 

vanishes at 0eq   (i.e. at 0a  ). For such laws Eq. 33 simplifies to 
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Eq. 34 is still valid but its right hand side should be determined by means of Eq. 35. 

 

Conclusions 

The general solution proposed describes the process of pure bending of incompressible, rigid 

viscoplastic material al large strains. The constitutive equations include quite an arbitrary law of 

damage evolution. The dependence of the yield stress on the equivalent strain rate is also quite 

arbitrary. An advantage of the method used is that the boundary value problem has been reduced to 

two partial differential hyperbolic equations for the damage parameter and the radial stress written 

in characteristic coordinates (Eqs. 10 and 13). In general, these equations can be solved by standard 

and well documented numerical methods, though some difficulty can appear because these 

equations involve the function  s a  which should be found along with solution to Eqs. 10 and 13. 

In order to determine this function, a non-standard condition in integral form should be used (Eq. 

25). Of special importance is the behaviour of the function  s a  at the initial stage of the process, 

0a , because the general stress solution reduces to Eq. 17 at 0a  . In order to facilitate 

numerical treatment of the initial stage of the process, the second derivative of s with respect to a at 

0a   has been found analytically (Eqs. 33 and 35).  
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