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Abstract. The contact interaction of two elastic solids of identical materials, one of which has a 

regular relief that is formed by a periodic system of shallow tunnel grooves of the same shape, under 

sequential loading by normal and shear forces is studied. By using the complex potential method, 

the corresponding problem is reduced to a singular integral equation with Hilbert kernel for the 

relative tangential shift of boundaries. The analytical solution to the problem is obtained for a 

certain shape of the groove. By making use of the obtained analytical solution, the surface principal 

normal and shear stresses along with the parameters of slip zones and their dependences on the 

loading are analyzed. The most possible regions of the cracks initiation and plastic yielding is found 

on the basis of the classical strength criteria. 

 

Introduction. There are different ways of processing and modification of the mating surfaces to 

improve the functional characteristics of a moving connection and to create the sites with 

predictable contact behavior. In recent years, micro-texturing of surfaces is efficiently used [1]. This 

approach consists in formation of periodically located grooves of the same shape. To create such 

microgeometry, the laser beam processing is commonly used. The contact parameters of micro-

textured bodies along with their contact strength, stiffness, and wear can be predicted on the basis of 

analytical or analytical-numerical solutions of contact problems for surfaces with periodic systems 

of grooves and pits by taking into account the friction, stick, and slip. 

The present paper concerns the two-dimensional contact problem of frictional interaction 

between two elastic half-spaces with periodical relief of the surfaces under the sequential loading by 

normal and shear forces. The aim of the work is to examine the behavior of the contacting solids and 

assess the strength of the contacting couple. In our investigation we obtain analytical solution. The 

knowledge of the analytical solutions to contact problems serves as a ground for the investigation of 

strength, durability, fatigue of contacting couples. Much attention has been given to the interaction 

of solids with regular relief (a wavy surface or a relief formed by the periodic system of indenters) 

in the case of frictionless (see [2–5]) and frictional sliding (see [6–10]) contact of such bodies. No 

attention, however, has been given to the contact interaction of bodies with textured surfaces when 

periodic zones of local frictional slip arise. 

Description of the problem. We investigate the contact interaction between two semi-infinite 

isotropic elastic solids 1D  and 2D  made of identical materials (bodies has identical Poisson’s ratio 

1 2     and the shear modulus 1 2G G G  ) in the Cartesian coordinate system Oxy . The 

solid  2D   has a plane boundary. The boundary of  1D   is described by the periodic smooth function 
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where 00 1r b  , 0r  is the maximal depth of the grooves and d  is the period. The maximum 

depth of the grooves 0r  is achieved in their center ( 0max ( ) (0 )r x r r kd   ) and 

( ) ( ) 0r b kd r b kd      . The bodies before contact are shown in Fig. 1. 

Initially, the bodies are pressed by monotonically increasing nominal pressure np  that leads to 

monotonic decrease in intercontact gaps size. Depending on value of np , either an incomplete 

contact of bodies (if n clsp p ) can be realized, when an intercontact gap will be within each 

groove, or a complete contact can be realized (if n clsp p ). Here clsp  is a nominal pressure at 

which the gaps will close completely and all points of the both surfaces will be in contact. We 

consider the situation when n clsp p . Then, the bodies are subjected to the nominal tangential 

stress nq  (Fig. 2). According to the Amonton-Coulomb law, the bodies are in stick in each point of 

the contact region if the tangential contact stresses ( ) ( ,0)xyq x x   are less than the product of the 

contact pressure ( ) ( ,0)p x x   and the friction coefficient  : ( ) ( )q x p x . So, the bodies are in 

stick if the inequality ( )n n clsq p p   is satisfied. If the nominal tangential stress nq  reaches the 

critical value 0 ( )n clsq p p  , sliding starts in the central point of each groove. For the nominal 

tangential stress nq  from the range 0 n nq q p  , the slip zones are arising within each groove 

beginning from its center, where the contact pressure reaches its minimum 

( min ( ) (0 ) n clsp x p kd p p    , 0, 1, 2,...k    ). The tangential stress ( ) ( )q x p x  caused by 

the friction forces arises in the slip zones. 
 

                 
Fig. 1.                                                                              Fig.2. 

 

In Fig. 2 the stick zones of surfaces are shaded. The direction of the sliding of the surfaces in the 

slip zones is indicated by arrows. 

If the nominal tangential stress nq  reaches the value np , the bodies are sliding throughout the 

contact surface. In this article we consider the tangential stress nq  from the range 0 n nq q p  , 

which leads to appearance of the slip zone of width 2c  within the each groove. The bodies are in 

stick beyond the slip zones. 

Let us denote  ,w
kI w kd w kd    ,    2 , , 2w

kJ d kd w kd w kd d kd        ; 

,w b c ; and    , , ,b c
kJ b kd с kd с kd b kd        . Here and further on, 0, 1, 2,...k     



 

 

Under the above assumptions, the boundary conditions of the periodic contact problem are the 

following: 

( ,0) ( ,0)y yx x   , ( ,0) ( ,0)xy xyx x    , ( ,0) ( ,0) ( )v x v x r x    ; (2) 

( ,0) ( ,0)xy yx x    (3) 

in the slip zones ( c
kx I ); 

( ,0) ( ,0)y yx x   , ( ,0) ( ,0)xy xyx x    ; 

( ,0) ( ,0)u x u x  , ( ,0) ( ,0) ( )v x v x r x     (4) 

in the stick zones ( c
kx J ); 

y np   , xy nq  , 0x   (5) 

at infinity. 

Hereinafter u  and v  are the components of the displacement-vector; y , x , and xy  are the 

stress-tensor components; superscripts "+" and "-" denote the limit values of functions at the 

interface in 2D  and 1D , respectively. 

The problem under consideration lies in the determination of the width of the slip zones and the 

stress-strain state in the solids. In order to analyze the contact strength of the contact pair, much 

attention is paid to the distribution of the surface principal shear and normal stresses. 

Solution of the problem. Let us present the stresses and derivatives of displacements in terms of the 

complex potentials in the form guaranteeing the satisfaction of the conditions (5) 

 4Re ( )x y l nz p     ,   ( ) ( ) ( ) ( )y xy l l l n ni z z z z z p iq          ; 
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where z x iy  , 1i   , 3 4   , and 1( )z  and 2( )z  denote piecewise-analytic functions 

vanishing at infinity ( 1 2( ) ( ) 0     ). 

We define the complex potentials 1( )z  and 2( )z  through the functions of the grooves height 

( )r x  and the relative tangential shift of boundaries ( ) ( ,0) ( ,0)U x u x u x    in the slip zones 
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Taking into account the periodicity of the functions ( )U x  and ( )r x , we can write 
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By substitution of the formulas (8) into the expressions (6), we find the contact pressure and 

tangential contact stress 
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Substitution of the expressions (9) into the boundary condition (3) yields a singular integral 

equation (SIE) with Hilbert kernel for the function ( )U x  

 1( ) ( )
( )ctg ( ) ( )ctg

2

c b

n n

c b

dt x t x
U t dt q p r t dt

d G d
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     , x c . (10) 

The function ( )U x , taking into account its physical meaning, meets the following conditions: 

( ) 0U c kd   , ( ) 0U c kd  , ( ) 0U c kd    , ( ) 0U c kd   . (11) 

The first two conditions in (11) follow from the continuity of the tangential displacements of the 

boundaries, and the second two conditions in (11) provide boundedness of the tangential stress at the 

edges of the slip zones. 

Let us introduce the variables  tg x d   ,  tg t d  , by use of which the SIE with the 

Hilbert kernel (10) can be transformed into a SIE with the Cauchy kernel 
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The conditions (11) in the new variables have the following form: 

( ) 0U   , ( ) 0U   , ( ) 0U   , ( ) 0U   . (13) 

In view of the second two conditions in (13), we find the solution of the SIE (12) bounded at the 

points    . Integration of this solution accounting for the first condition in (13) gives the relative 

tangential shift of boundaries, which in the original variables has the form [11]: 
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It should be noted that the bounded solution of the Eq. (12) exists if the RHS of (12) satisfies the 

additional condition [11], from which we obtain the equation for finding the slip zones width c : 
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. 

By substitution the Eqs. (1) and (14) into the expressions (9), we obtain the contact stresses: 
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Contact strength. The manufacture and operation of machine joints and construction units is 

accompanied by the appearance of various defects on their surfaces, in particular microcracks. This 

leads to the fact that the failure of the contacting bodies commonly begins on their surfaces. Hence, 

the effect of frictional slip on the surface strength of the textured bodies is analyzed below. 

The strength of a body of a plastic material will be estimated with accordance to the third 

classical strength theory, and the strength of a body of a brittle material will be estimated with 

accordance to the first classical strength theory. According to the first strength theory, the principal 

stress has the determining influence on the strength of a body. The condition of the material failure 

is the condition that the principal normal stress 1  reaches or exceeds the ultimate tensile strength 

t , or the condition that the principal normal stress 2  reaches or exceeds the ultimate compressive 

strength c . The first strength theory may be used to predict the failure of a number of brittle 

materials – iron, steel, glass, stone, ceramics, etc. The third classical theory is commonly applied to 

assess the strength of plastic materials (copper, brass, lead, etc.). This theory assumes that a 

materials fails when the principal tangential stress max  reaches the yields strength * . 

Using the Eqs. (15)–(17) and the formulas 2 2
max ( ) 4y x xy     , 

1 max( ) 2x y     , 2 max( ) 2x y     , we find the principal shear stress max  and 

principal normal stresses 1 , 2  on the surface of the body 1D : 
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In the formulas (19) the sign "+" refers to the 1 , and the sign "-" refers to the 2 . 

The obtained analytical results are illustrated in Figs. 3–8, where the dimensionless parameters 

x x d , b b d , 0 0r r d , c c d , /n nq q G , /n np p G , max max G   , 1 1 G  , 

2 2 G   are introduced. All the calculations were performed for the friction coefficient 0.3  , 

maximal depth of the groove 4
0 10r  , Poisson ratio 0.2  , and nominal pressure 45 10np   . 

The distributions of the principal shear stress max , the principal normal stresses 1  and 2  on 

the surface of the body 1D  for the half-width of groove 0.2b   and the nominal tangential stress 

58.064 10nq   , which causes the initiation of the slip zone of the half-width 0.15c  , are given in 

Figs. 3–5 by the solid curve. The dashed curves correspond to full stick of the bodies (i.e. absence of 

slip). The solid vertical lines go through the edge of the slip zone, and the dashed vertical lines go 

through the edge of the groove. Fig. 3 shows that max  has two local maximums - one is located at 

the left edge of the slip zone and the other is located near the right edge of the slip zone. Besides, the 

latter exceeds the former. Therefore, for the textured bodies of plastic materials, the surface plastic 

yielding can begin within the slip zone near its right edge. It is interesting to note that the principal 

stress max  is constant throughout the surface when the full stick of the bodies is realized (the 



 

 

horizontal dashed line in Fig. 3). It means that the plastic body has the full-strength textured surface 

in the case of the absence of slip, i.e. the surface plastic yielding has not local character at the instant 

of its initiation, but covers the whole surface. In spite of the complete contact of bodies, the 

principal stress 1  is tensile at a certain part of the groove, in particular within the slip zone (Fig. 4). 

The maximum value of 1  is reached in the slip zone between its right edge and the groove center. 

Thus, for the textured brittle body the surface fracture due to the action of the tensile stress 1  starts 

between the groove center and right edge of the slip zone. If the bodies are in stick, the maximum 

value of 1  is reached at the center of the groove (the dashed line in Fig. 4). The principal stress 2  

is compressive on the whole surface of the textured body and its absolute maximal value is reached 

at the groove edges (Fig. 5). Therefore, in the case of the textured brittle body, zones located in the 

vicinity of the groove edges are sensitive to brittle fracture caused by the compressive stress. The 

principal stress 2  in the case of frictional slip and the principal stress 2  in the case of full stick 

are almost equal (the solid line and the dashed line match almost exactly in Fig. 5). 
 

       
Fig. 3.                                                 Fig. 4.                                    Fig. 5. 

 

The distributions of the principal shear stress max  (Fig. 6), the principal normal stress 1  

(Fig. 7), and the principal normal stress 2  (Fig. 8) are obtained for the half-width of groove 

0.3b   and different values of the nominal tangential stress nq : curve 1 corresponds to 

59.276 10nq    ( 0.2c  ), curve 2 corresponds to 41.071 10nq    ( 0.25c  ), and curve 3 

corresponds to 41.372 10nq    ( 0.29c  ). 
 

       
Fig. 6.                                           Fig. 7.                                              Fig. 8. 

 

As the slip zone increases, the maximal values of the principal shear stress max  increase, and 



 

 

the points where these maximal values are reached move rightward, but always are located within 

the slip zone (Fig. 6). Increase in the nominal tangential stress nq  leads to increase in the 

asymmetry of the principal stress 1  distribution within the groove (Fig. 7). In so doing, the 

maximal values of 1  reached near the right edge of the slip zone increase as the size of the slip 

zone increases. The principal stress 2  is almost independent of the slip zone size (Fig. 8) and 

always reaches its absolute maximum at the groove edges. 

It should be noted that the contact strength of bodies with single grooves was studied in [10]. 

Conclusions. The method for investigation of the contact interaction of two solids, one of which has 

a regular relief that is formed by a periodic system of shallow tunnel grooves of the same shape, 

under sequential loading by normal and shear forces is developed. This method is based on the 

method of the complex potentials. As a result, the corresponding problem is reduced to a singular 

integral equation with Hilbert kernel for the relative tangential shift of boundaries. For a certain 

shape of the groove, the analytical solution is obtained. By making use of the obtained analytical 

solution, the distributions of the principal normal and shear stresses on the surface of the textured 

body are analyzed. Based on the criterion of the maximum shear stress and the criterion of the 

maximum principal stress, it is shown that in brittle materials the most possible region of the cracks 

initiation is located between the groove center and groove edge when the material fails due to tensile 

normal stresses and at the groove edges when the material fails due to compressive normal stresses. 

For plastic materials, the plastic yielding necessarily occurs near the edges of the slip zone. 
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