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Abstract. Materials characterized by a regular structure and possessing quasi-brittle or quasi-ductile 

fracture type are investigated, the specific linear size of a structured element being known. When 

both necessary and sufficient criteria are derived, the Neuber-Novozhilov approach is used. The 

modified Leonov-Panasyuk-Dugdale the model is proposed for the mode I crack when the pre-

fracture zone width coincides with the plasticity zone width. Simple relations for critical parameters 

of quasi-brittle fracture have been derived: tensile stresses, pre-fracture zone lengths, and stress in-

tensity factors (SIFs). The modified Leonov-Panasyuk-Dugdale model is proposed for the mode I 

crack when the pre-fracture zone width coincides with the plasticity zone width. Fracture diagrams 

for which critical stresses calculated trough both criteria are plotted within a wide range of varia-

tions in crack lengths. Applying the finite element method, an elastic-plastic problem for tension of 

a plate with the central crack; sizes and the shape of a plastic zone in the vicinity of the crack tip has 

been determined at various loading levels corresponding to quasi-brittle and quasi-ductile fracture 

types. Analysis of the results obtained allows appreciation of the pre-fracture zone width and criti-

cal COD (crack opening displacement).  

 

Introduction  

Recently the increasing interest has been viewed just as in multi-scale calculations, so in multi-scale 

material engineering [1–3]. Previously necessary multi-scale fracture criteria were derived in [4, 5] 

and in doing so, only initial crack lengths were used. Later in [6–8], the advanced fracture criteria 

were proposed within the framework of the Leonov-Panasyuk-Dugdale model [9, 10] for one of 

structural levels. As opposed the classical model, the modification of the Lenov-Panasyuk-Dugdale 

model resolves properly to the fact that the width of pre-fracture zone in addition to its length was 

introduced into the model. Introduction of an additional parameter allowed appreciation of fracture 

of the pre-fracture zone structure nearest to the center of a real crack with invoking information on 

parameters of the standard   diagram of material [7]. The derived sufficient criteria [6–8] allow 

the passage to the limit to necessary criteria when the pre-fracture zone length vanishes.  

The Neuber-Novozhilov approach [11, 12] allows one to extend the class of solutions for structured 

media. According to Novozhilov’s terminology, criteria studied here are referred to as sufficient 

ones. Infinite stresses at the imaginary crack tip, which are excluded by the continual fracture crite-

rion, are not in contradiction with discrete fracture criteria if the singular component of solution has 

an integrable singularity. The substantiation of the Neuber-Novozhilov approach in formulation of 

the criteria are given in [13]. 

 

Description of material structure in the proposed model 
Materials with a regular structure displaying quasi-brittle or quasi-ductile fracture type are consid-

ered, the specific linear size 0r  of a structural element (for example, grain size) being known. Make 

use of the modification [6, 7] of the Leonov-Panasyuk-Dugdale model [9, 10] in which parame-

ters of the classical   diagram of material strain are used. The simplest approximation of the di-



  

agram is shown in Fig 1, а. Here m  is the theoretical (ideal) tensile strength of material, 0  is the 

maximum elastic elongation, and 1  is the maximum elongation of a structural element. Thus, the 

1 0   value is inelastic elongation of structural element. In the classical Leonov-Panasyuk-

Dugdale model, stresses m  coincide with compression stresses acting on the continuation of a real 

crack in the pre-fracture zone. Stresses m for common structural steels are equal to the yield 

strength. 

 

 
 

Fig. 1. Approximation of   material diagram (a); interrelation between points   -of dia-

gram and points of pre-fracture zone (b). 

 

Suppose that an internal mode I crack of length 02l  extends rectilinearly in a structurally inhomo-

geneous material under action of tensile stresses   specified at infinity. In addition to the real in-

ternal rectilinear crack-cut of length 02l , we introduce into consideration an imaginary crack-cut of 

length 02 2 2l l   , where   is the length of pre-fracture zone located on the continuation of the 

real crack. In the Leonov-Panasyuk-Dugdale model [9, 10], the field of normal stresses ( ,0)y x  on 

the imaginary crack continuation may be as a sum of two terms (the origin of Cartesian coordinate 

system Oxy  is at the right crack tip of imaginary crack) 

1/2
I( ,0) / (2 ) (1)y x K x O   ,  I I IK K K   ,  I 0K   ,  I 0K   ,    (1) 

where I I ( , ) 0K K l    is the total stress intensity factor at the imaginary crack tip; IK  is the 

stress intensity factor generated by stresses   specified at infinity; IK   is the stress intensity fac-

tor generated by continued stresses m  acting in the pre-fracture zone. 

The pre-fracture zone [6, 7] occupies a rectangle with sides   and a , the pre-fracture zone length 

  being determined in the process of solving a fracture problem and the pre-fracture zone width a  

may be identified with the pre-fracture zone width. Given in Fig. 1, b is the scheme illustrating 

qualitatively the interrelation between points 1, 2, 3 and 4 on the   -diagram and those 1, 2, 3 

and 4 of the pre-fracture zone. The last points are located on the real crack continuation, its left tip 



  

being considered. Beyond the pre-fracture zone, material exhibits elastic deformation and at the pre-

fracture zone border, the material begins to exhibit inelastic deformation.  

 

Discrete-integral fracture criterion 
The sufficient discrete –integral fracture criterion [12] for the mode I crack has the form 

0
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*2 ( ,0) mx v , 0x   .         (3) 

Here ( ,0)y x  are normal stresses on the crack continuation; Oxy  is the Cartesian coordinate sys-

tem oriented about the right crack tip (the origin of the coordinate system coincides with the imagi-

nary crack tip in the Leonov-Panasyuk-Dugdale model [9, 10]); 0r  is the specific linear size of the 

material structure (grain diameter); 2 ( ,0)xν  is the crack opening; 2 ( ,0) m
   ν  is the critical 

crack opening. 

There exists a singular part of solution for a structurally inhomogeneous material, which is deter-

mined in relation (1) by the specified stresses  . For every length 02 2 2l l    of the imaginary 

crack, stress intensity factor IK   generated by stresses  ,has the form IK l   . In the case 

of qusi-brittle fracture ( 0l ), we obtain the following relation with an accuracy of magnitudes of 

the high order of infinitesimal I 0K l   . 

Since I 0K  , we make use of the following representation of normal stresses (1) on the crack con-

tinuation 
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The expression for the stress intensity factor IK   is written as 
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Thus the distribution of normal stresses on the crack continuation may be given as 

( ,0) ( ,0) ( ,0)y y yx x x     ,         (6) 

where I( ,0) / 2y x K x      , I( ,0) / 2y x K x   . 

In papers [6, 7], modification of the Leonov-Panasyuk-Dugdale model has been proposed [9, 10]. 

Here the parameter characterizing the pre-fracture zone width is introduced into this model and is 

considered. The scheme illustrating the two-sheet solution is shown in Fig. 2, а. The solution de-

fined for the entire plane with a bilateral cut is in agreement with the linear fracture mechanics. One 

or another solution is defined in compliance with the nonlinear fracture mechanics only for the pre-

fracture zone occupying a rectangle with sides   and a . Vertexes of this rectangle are 

( , / 2), (0, / 2), ( , / 2), (0, / 2)A a B a A a B a       . As it is in the classical model, stress-

es m  equal in absolute magnitudes and oppositely directed are applied to crack lips in the pre-

fracture zone. This corresponds to the line between points 1 and 4 on the    diagram depicted in 

Fig. 1, b.  

Identify the width of a pre-fracture zone with that of a plasticity zone for the plane stress state at the 

real crack state [7]: 
2

I(5 / (4 ))( / )ma K  .We adopt the parameter of the maximum inelastic 



  

elongation 1 0   from the    diagram (Fig. 1, а). Then the critical crack opening m , at which 

the fiber of a pre-fracture zone nearest to crack center is broken, is calculated by the relation 

1 0( )m a     .           (7) 

 

 
 

Fig. 2. Arrangement of the rectangular pre-fracture zone (а); fracture assessment diagram (b). 

 

For opening 2 ( ,0)xν  for 0x   of an imaginary crack in (3), the following representation can be 

written for the plane stress state 

I I

1 | |
2 ( ,0) (| |), 0, 0

2

x
x K O x x K

G






   ν , 

3

1










.     (8) 

Here   is the Poisson coefficient and G is the shear modulus. 

Transform equalities (2) and (3) making use of relations (4)–(8), retaining terms with multi pliers 

/ l  and omitting terms with multipliers / 1l . As a consequence, we obtain the analytical 

expression for critical stresses  
  for quasi-brittle materials (critical parameters are denoted by as-

terisks) 
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Here 02 2 2l l     is the critical crack length. Expression (9) makes sense, if 
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Inequality (10) is the restriction, which holds only for brittle and quasi-brittle materials of the type 

of ceramics and high-strength alloys. It follows from inequality (10) that the inelastic elongation 

1 0   must not be more than 05 .  

For relation (9), the passage to the limit is obvious for 1 0/ 1    and hence we can turn to consid-

eration of fracture of brittle materials ( 0  ). Critical stresses 0  determined by the necessary 

fracture criterion (2) for brittle fracture are calculated as follows 
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In Fig. 2, b are given fracture curves in log-log plots: curve I is plotted by criterion (11), curve 2 is 

plotted by criterion (9) for the relation 1 0/ 1 4 / 5    . The fracture assessment diagram, which 

characterizes the state of nonlinear system on the plane 0 0(2 / , )l r   is plotted. This plane with 

curves 1 and 2 is divided into three areas: in area I, the initial crack length is not changed (the crack 

is stable); in area II, the initial crack length increases by the pre-fracture zone length (the crack ex-

tends being stable); in area Ш, the initial crack length increases catastrophically (the crack is unsta-

ble). The proposed fracture assessment curve agrees well with the experimental results described in 

[14] in Fig. 1, а. 

 

Numerical experiments 
Consider fracture process of both quasi-brittle and quasi-ductile materials. For quasi-brittle materi-

als, we compare fracture assessment curves obtained previously with results of numerical experi-

ments performed by the method of finite elements. For quasi-ductile materials, we make use of the 

same sufficient fracture criterion (2) and (3) to fit it for numerical calculation of a stress field 

around the crack tip and crack opening at the real crack tip. 

Make use of the updated Lagrangian approach of solid mechanics equations [15] preferable for 

simulation of deformation of solids made from elastoplastic material under great strains. Consider a 

square plate with the central internal crack subjected to axial tension with stresses specified at   

borders. The plate thickness is 0.4 mm, the plate width 100w   mm, the crack of length 02l  varies 

from 4 mm to 90 mm. In virtue of two symmetry planes, only one fourth of the plate is simulated in 

the finite element analysis. In the problem domain, a fine uniform mesh with 250000 four-node 

square elements is generated, each being of 0.1 mm in length. For short cracks of half-lengths 0l   

2, 3, 4 and 5 mm, a fine mesh containing 10
6 

square elements with an element length of 0.05 mm is 

used. The plate is expected to be deformed under plane stress conditions. The material of the plate 

has the following characteristics: 200000E   MPa, 0.25   and Y 400   MPa. The fracture dia-

gram of the material is shown in Fig. 1, а, where m Y  . The external   load increases follow-

ing the linear law from zero to Y  in a time 1t  . By a time in quasi-static problems is meant some 

monotonically increasing load parameter. 

Fig. 3 shows the distribution of equivalent plastic strains (2 / 3)p p p

ij ij    in the vicinity of the 

crack tip, which is located on the lower left, for the case 0 15l   mm, Y/ 0.4   . The narrow 

plastic zone 2-3 layers of elements thick extends rectilinearly from the crack tip along its axis form-

ing a pre-fracture zone with the width of 0.1 mm and lengths of 3.4 mm, the strain of the ele-

ments nearest to the crack tip is p  20%. Thus, equality (2) of the strength criterion holds over the 

whole outline of the plastic zone including the imaginary crack continuation. 

For the model of quasi-brittle material, the maximum elongation of a structural element is taken to 

be 1 0.02  . Then the maximum elastic elongation 0 T / 0.002E   and inelastic elongation of a 

structural element 1 0 0.018   . Thus we obtain the parameter characterizing the ratio of inelastic 

and elastic relative material elongations  1 0 0/ 9    . Substituting the pre-fracture zone length 

a  found from numerical calculations into relation (7), we get the critical crack opening 
*

1 0( )m a    . At the every simulation time-step, the opening of a crack 2ν  at the point A  is de-

termined (Fig. 2, а) and implementation of the sufficient criterion (3). As soon as 2ν  becomes larg-

er than *
m or equal to that, the external load   registered at this time-step is the critical load de-



  

termined by the sufficient criterion  
 . The critical load by the necessary criterion 0  is deter-

mined at the instant of time corresponding to the first onset of plastic strains in the finite element 

nearest to the crack tip. Thus equality (3) of the deformation fracture criterion is valid for the real 

crack tip.  

 

 
 

Fig. 3. Zone of plastic strains around the crack tip. 

 

The calculation results are depicted in Fig. 4, а, where fracture diagrams are shown in “ordinary” 

coordinate system: curves 1 and 2 are plotted by the sufficient criterion and the necessary one, re-

spectively; points correspond to numerical calculations for cracks with half-lengths of 0l  2, 3, 4, 5, 

10, 15, …, 45 mm. Approximation of experimental data is carried out by the method of least 

squares making use of structural relations (11) and (9) for curves 1 and 2, respectively.  

The technique of plotting curve 1.should be elucidated. On the abscissa in Fig. 2, b, the value of 

0 02 /l r  is plotted, where 02l  is the initial crack length, 0r  is the specific linear size of a material 

structure, and on the abscissa in Fig. 4, а, the value of 0l is plotted. For approximation of numerical 

calculation data, functions of the kind of 1( )a bx   are chosen, coefficients of which are deter-

mined by the method of least squares. This allows the following values to be obtained: 0.9999a   

and 16.95b  . Equating the coefficient 02 / r  at the independent variable 0l  in relation (11) to the 

coefficient b , we obtain 02 / 16.95r  , from which 0 0.118r  . The specific linear size of the mate-

rial structure 
0

r  turns to be 0.1 mm, i.e., it is approximately equal to the size of the finite element. 

The parameter of relative inelastic elongation  1 0 0/ 9     is appropriate to the quasi-ductile 

fracture type; therefore, relation (9) is not acceptable since limitation (10) is violated. For approxi-

mation of critical stresses by the sufficient criterion, the function of the type 1(1 )bax  is chosen. 

The method of least squares gives the value 0.89b  for exponent, which essentially differs from 

the exponent 0.5 in relation (9). Deviation of the approximating curves 1 and 2 from experimental 

points for 0 35l   mm is explained by the effect of finiteness of the plate width since the theory dis-



  

cussed above has been developed for infinite plates. The effect of the plate width on critical fracture 

curves for edge cracks is given in [16]. 

 

 
 

Fig. 4. Fracture diagrams plotted by the method of least squares (а); those in the log-log coordi-

nate system (b). 

 

Fracture diagrams in Fig. 4, b are plotted in log-log coordinates in the wide range of fracture from 

quasi-brittle to quasi-ductile. Curve 1 is plotted by the necessary strength criterion (11). Curves 2, 3, 

4 and 5 are plotted by the sufficient criterion for values of the relative inelastic elongation parame-

ter  1 0 0/ 2    , 5, 7 and 9, respectively. Choice of the approximating function in the form 

1(1 )bax   leads to exponents 0.7b  , 0.85, 0.87 and 0.89 for curves 2, 3, 4 and 5, respectively. 

Analysis of numerical results carried out by calculations of 0  and  
  and comparison of the cal-

culation results with analytical expressions (9) and (11) makes it possible to infer that analytical 

representation (11) for brittle fracture gives good agreement with the numerical calculation, and ex-

pression (9) can be used for quasi-brittle fracture only for  1 0 0/ 2    . 

Given in Fig. 5 is the deformed configuration of a crack surface at 80:1 scale for the case of 0 15l   

mm, T/ 0.19   . Blunting of the initially sharp internal crack is observed, therewith the more is 

the load, the greater is the blunting. In the proposed analytical model (2) and (3), the last condition 

is appropriate to blunting of the real crack at its tip and estimates break of displacements: an initial-

ly sharp crack transforms into blunt one under deformation of elstoplasic material [17]. Earlier Rice 

and Rosengren [18] and Hutchinson [19] drawn attention to gradual crack blunting when the prob-

lem on tension of a plate with the slit was studied for strengthened materials. 

 

Summary 
Materials possessing brittle, quasi-brittle, and quasi-ductile fracture types have been considered. For 

these materials, fracture diagrams have been plotted, which contain two critical curves on the plane 

“crack length – external load”. The lower bound for critical stresses corresponds to the necessary 

fracture criterion, and the upper bound for critical stresses corresponds to the sufficient criterion. 

For description of brittle and quasi-brittle fracture, analytical expressions have been derived. Nu-

merical experiment on simulation of quasi-brittle and quasi-ductile fractures in the context of the 

theory of great elastoplastic strains allowed one to refine the applicability domain of analytical rep-

resentations for quasi-brittle fracture and to obtain the simple description of a passage from quasi-

brittle to quasi-ductile fracture. The results of full-scale experiments [14, 16] on fracture of brittle 

and quasi-brittle materials agree well with calculation results carried out with a help of analytical 

expressions and numerical experiment.  

 



  

 
 

Fig. 5. Deformed configuration of crack surface. 
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