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Abstract. The work presents theoretical analysis and fracture interpretation of Compact Shear (CS) 

specimen for Mode II fracture testing of materials. Two fracture criteria are used: the maximum 

circumferential stress criterion and the criterion of minimum strain energy density. The problem for two 

parallel crack s in an infinite body under shear loading as in the CS specimen is simplest model for this 

investigation. Previously obtained results for stress intensity factors (Petrova, Sadowski, 2012) are used 

in this investigation. The interaction of the cracks leads to mixed-mode loading conditions near the crack 

tips. The dominant stress intensity factor is Mode II KII, but KI is also non-zero. Using the fracture criteria 

the direction of crack propagation as well as the critical condition under which the crack would initiate is 

calculated. The influence of the geometry of the problem, i.e. the crack inclination angle to the remote 

shear loading, distance between the cracks, on the main fracture characteristics is investigated. 

 

Introduction  
Many materials, such as cement pastes, concretes, wood, different composites, are generally weak in 

shear [1] and also reveal shear fracture under compression [2]. The shear fracture is also observed and 

intensively investigated for geomaterials [3].  Hence the study of materials response to shear load is 

important in fracture mechanics of materials.  For experimental shear Mode II fracture tests the geometry 

of the specimen and loading conditions should be chosen so that  

- to induce shear with minimal influence of normal stresses, 

- to minimize influence of edges of the specimen on the crack tips, 

- to prevent friction between the cracked faces. 

The friction between the faces behind the crack tips can cause a significant increase in values of Mode II 

stress intensity factor KII [4,5]. Besides, it was shown in [4] that the compressive stresses ahead of the 

crack tip significantly affect the Mode II fracture. 

The general expression for the stress intensity factors (Mode I and Mode II) is written as 

aPfK IIIIII ,,   , where P is applied load, a is the crack length and fI,II is the geometric correction 

factor. All geometrical effects are reflected in fI,II. The fracture parameters are measured in a test on any 

specimen, provided fI,II is known for the configuration. Because of analytical solutions are not available 

for the real specimen geometries finite element analysis and boundary element analysis are used for 

determination of fI,II. 

Different types of Mode II specimens are used, a review of these specimens can be found, for 

example, in [6] and in the stress intensity factors handbook [7]. One of these specimens, the compact 

shear (CS) specimen was introduced in [8,9], Fig. 1. This specimen is convenient for Mode II fracture 

testing, but experimental and numerical investigations show significant differences in the values of the 

stress intensity factors have resulted from minor geometrical differences [8,9,10]. Therefore the problem 

for study CS specimens in order to get the optimal specimen geometry remains important for planning the 

Mode II fracture experiment. 

It has been observed that a crack under mixed mode loading and, in particular, under Mode II loading 

will not follow a straight path, but will deviate at an angle ϕ with respect to the crack axis. For mixed 

mode cases special fracture criteria are formulated, which determine the critical conditions for crack 



propagation and the direction of this propagation, i.e. the angle ϕ. Discussion on applicability of existing 

fracture criteria can be found in [11]. In the present paper two of the most widely used criterion will be 

considered: the maximum circumferential stress criterion (Cherepanov, 1963; Erdogan and Sih, 1963; 

Panasyuk and Berezhnitskij, 1964, see for references [12,13,14]) and the criterion of minimum strain 

energy density [11,15]. Previously obtained results for stress intensity factors [16] are used in this 

investigation and are cited here for the sake of completeness. The problem for the cracks under shear 

loading corresponding to the loading in CS specimen in an infinite body was considered in [16] and 

analytical and semi-analytical solution based on the singular integral equations was obtained. In [17] 

numerical analysis was done by other approach, Finite Element Method implemented in FRANC2D/L 

code. Analytical and FEM calculations were also compared and discussed. This work is concentrated on 

studying of the application of fracture criteria for fracture interpretation of the results that is important for 

experiments. 

 

Formulation of the problem and solution  
The scheme of the CS specimen for the Mode II fracture test is presented in Fig.1a. The Fig.1b shows the 

experimental CS specimen made from concrete, the shear fracture experiment has been done in [18]. 
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Fig. 1. Compact shear specimen: a) Sketch of the experimental specimen for Mode II fracture 

test; b) An experimental specimen after the Mode II fracture test [18]. 

 

 
 

Fig. 2. Two parallel cracks in an infinite 

plate under the load τ as in the CS specimen. 

  

 
 

Fig. 3. A crack with the inclination angle α 

to the direction of the applied loading. 

 

 

The problems for two parallel cracks in an infinite body (Fig. 2) is the simplest model for this 

investigation. The cracks (with length 2a) are under shear loading corresponding to the loading in CS 

specimen. The shear load τ is dBP / , P is the load and B is thickness of the specimen in the Fig.1a, d 

– the distance between the cracks (Fig. 2).  

 



Approximate analytical and semi- analytical method (based on the singular integral equations) is used 

for the problem. Following the procedure presented in [12] the asymptotic solution for two arbitrary 

oriented cracks (one crack is shown in Fig. 3) was derived. The cracks faces are under shear loading 
nin

n eis
 21)1(

 (n=1, 2), which corresponds to the loading of the considered problem for 00n  

(n=1,2) (Figs. 2 and 3). For two parallel cracks the stress intensity factors (SIFs) are written as 
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This result was obtained in [16,17]. Here the upper part of the "  " or "  " signs refers to the upper tips 

and the lower part to the lower tips of cracks (Fig. 2). The small parameter is equal to the ratio of the size 

of cracks to the distance between the cracks, i.e. 1/2  da . 

For considered problem, Eq. 1, KI is positive at the upper crack tips for both cracks and negative for 

the lower tips. Hence, the direction of loading in the CS specimen (Fig.1) is appropriate for the 

experimental test. In the specimen, proposed in [8,9], the direction of loading is opposite and KI is 

negative in the investigated crack tips, hence, compression is observed near these tips that influences the 

accuracy of the experimental data [4,5,7]. 

The asymptotic solution Eq. 1 can serve as first approximation of the SIFs of the considered problem 

for the non-dimensional parameter λ = 2a/d in the range from 0 to 0.6 which corresponds d > 3.3a.  

A numerical solution of the system of integral equations, which is suitable for small distances between 

cracks, was obtained by Gauss–quadrature method [12,19]. Fig. 4 presents the normalized SIFs 

aKfaKf IIIIII  /,/   as function of inclination angle α of the parallel cracks to the direction of 

the applied load (Fig. 3). The angle α varies from –15° to 15° and is shown in radians in the figures. The 

non-dimensional distance d/a equals to 1, 1.5 and 2.5 and the designation for the non-dimensional 

distance is d in the figures. We can see that the value of fII is changed slightly with changing the angle α, 

but changing of fI is stronger. For α =0 we have fI ≠ 0, and for α close to ±0.05 (±2.9°) – fI  = 0. For some 

angles α we have physically non-realistic negative values of fI, it indicates possible compression near 

these tips that should be avoided in experiments for Mode II fracture. Fortunately, for α =0 values of fI for 

the upper tips of both cracks are positive and it was also obtained in the analytical solution Eq. 1. The 

difference in the results of asymptotic solution for 6.00   , Eq. 1, and the present numerical solution 

is about 3%. 
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(b) 

Fig. 4. SIFs at the upper crack tips: a) for crack 1 and b) for crack 2. The results are for 

different distances d between the cracks. 

 

 

Fracture criteria and direction of crack propagation  
From experimental and theoretical investigations of cracks under mixed-mode loading, it is known that 

the cracks deviate from their initial propagation direction. For prediction of the crack growth and 

direction of this growth a fracture criterion should be applied. Two criteria will be considered: the 



maximum circumferential stress criterion [12,13] and the criterion based on the strain energy density 

function [11,15]. 

 

 
Fig. 5. A crack with the kink angle  . 

 

Maximum circumferential stress criterion. Using the maximum circumferential stress criterion 

(Cherepanov, 1963; Erdogan and Sih, 1963; Panasyuk and Berezhnitskij, 1964, see for references 

[12,13,14]) the direction of the initial crack propagation (Fig. 7) is evaluated as 

 

  IIIIII KKKK 48arctan2 22 
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and the critical stresses can be calculated from the expression 
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Here KIc is the fracture toughness of the material, aKp Ic /0   and fI,II are the non-dimensional SIFs.  

For pure Mode II crack the SIF factor KI is equal to zero and Eq. 2 gives the fracture angle 
 5.700    (the upper sign is for the upper crack tip, the lower – for the lower). The initial direction of 

crack propagation in the general case is determined from Eq. 2 by substitution of the results for SIFs 
IK   

and 
IIK . 

 

Strain energy density criterion. Now the strain energy density criterion is used for fracture 

interpretation of the results. In [11,15] the minimum strain energy density factor criterion was introduced. 

The local strain energy density is given by rSdVdW //  . Based on the stress intensity factor solutions 

KI and KII, the strain energy density (SED) factor S(KI, KII) is defined as  
2

2212
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 and  43  is for plain strain, μ is the shear modulus and ν is Poisson’s coefficient. In Eq. 5   is the 

polar angle of the polar coordinate system (r,  ) with the origin at the crack tip. SED factor determines 

the mixed mode effects, i.e., the direction of crack initiation as well as the critical condition under which 

the crack would initiate. 



The criterion can be expressed mathematically as 
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The crack growth occurs when the SED factor reaches critical value, i.e. S = Scr for 0  . Here S is 

Eqs. 4 and 5. 

In the SED criterion the angle 0  depends on Poisson’s ratio. For Mode II cracks the maximum stress 

criterion predicts a fixed angle 0
0 5.70 , which corresponds to a material with zero Poisson’s ratio in 

SED criterion. For 3.0  the angle of crack propagation is 0
0 3.82 . 

 

Numerical results  
Figs. 6 and 7 present results based on the maximum stress criterion. Eq. 2 and the values of SIFs obtained 

in the previous section were used in Fig. 6 and Eq. 3 was used in Fig. 7. Fig. 6 shows the influence of the 

inclination angle α on the angle   at the upper crack tips. The dashed line 0
0 5.70  is plotted in the 

Fig. 6. We can see that the fracture angle is very sensitive to the direction of the applied load.  

Fig. 7 shows the influence of the inclination angle α on the normalized critical stress 0/ ppcr  Eq. 3 at 

upper crack tips for different distances d between the cracks. For α = 0 the critical stress at both crack tips 

is less than 1, i.e. less than the stress for one crack.  
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Fig. 6. The angle   at upper crack tips verses inclination angle α for different distances d.  

a) for crack 1, b) for crack 2.  
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(b) 

Fig. 7. The critical load at upper crack tips verses inclination angle α for different distances d. 

a) for crack 1, b) for crack 2. 



Figs. 8 and 9 present results based on the strain energy density criterion. Eq. 6 with Eqs. 4, 5 and the 

values of SIFs obtained in the previous section were used in Fig. 8. Fig. 8 shows the influence of the 

inclination angle α on the fracture angle   at the upper tip of the crack 1 for different values of Poisson’s 

ratio (ν = 0, 0.2, 0.3, 0.4) and for two distances d between the cracks (d = 1, 2). The curve for ν = 0 (black 

line) corresponds to the result for the maximum stress criterion. The horizontal dashed line corresponds 

to 5.700  (in radians at the figure) for pure Mode II and for ν = 0. 

Fig. 9 shows plot of aS 2
min /16   versus the inclination angle α for ν varying from 0 to 0.4. The 

quantity aS 2
min /16   increases with the angle α. As Smin will be used as a material constant, the above 

statement implies that the lowest value of the applied stress (the critical stress) to initiate crack 

propagation occurs at 12/   for a material with low Poisson’s ratio.    
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Fig. 8. The angle   at upper tip of crack 1 verses inclination angle α for different Poisson’s 

coefficients and distances d: a) d = 1, b) d = 2. 
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(b) 

Fig. 9. Normalized SDF for upper tip of crack 1 verses inclination angle α for different 

Poisson’s coefficients and distances d: a) d = 1, b) d = 2. 

 

Conclusions  
Theoretical analysis and fracture interpretation of CS specimen for Mode II fracture testing of materials is 

presented. The problem for two parallel cracks in an infinite body under shear loading as in the CS 

specimen is simplest model for this investigation. Previously obtained results for stress intensity factors 

[16,17] are used in this investigation. The present work is concentrated on studying of the application of 

fracture criteria for fracture interpretation of the results. Two fracture criteria are used: the maximum 

circumferential stress criterion and the criterion of minimum strain energy density. The direction of crack 

propagation and the critical condition under which the crack would initiate are obtained. The influence of 



the geometry of the problem, i.e. the crack inclination angle α to the remote shear loading and distance 

between the cracks, on the main fracture characteristics is investigated. The value of SIF KII is changed 

slightly with changing the angle α, but changing of SIF Mode I KI is stronger. At the same time the values 

of the fracture angle ϕ, of the critical stresses and of SED Smin, which are functions of SIFs KI and KII, are 

sensitive to the crack inclination angle α. Comparison between the results for two criteria is presented. 

The SED criterion includes the material parameter (Poisson’s ratio) and can get more results, but 

comparison with experimental date should be done. 
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