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Abstract. Statistical theory of revealed specific type of criticality – structural-scaling transitions in 

the ensemble of mesoscopic defects. The key results of statistically based phenomenology are the 

establishment of characteristic multiscale collective modes of defects responsible for relaxation  and 

damage-failure transition.  

 

Introduction  
The problem of fracture treated as a critical phenomenon represents one of the key problems of 

fundamental and applied physics of materials science. Experimental studies of material responses in 

a large range of loading rates show that the behavior of solids is intimately linked with the evolution 

of typical mesoscopic defects (microcracks, microshears). This characterizes generically solids 

under dynamic and fatigue loading, when the internal times of the evolution of ensemble of defects 

for different structural levels are approaching the characteristic loading times. Statistical theory of 

typical mesoscopic defects (microcracks, microshears) revealed specific type of criticality – 

structural-scaling transitions and allowed the development of phenomenology of damage-failure 

transition based on the definition of non-equilibrium free energy of solid with defects. 

 

Theory 

Statistical theory of the evolution of typical mesoscopic defects (microcracks, microshears) allowed 

us to establish specific type of critical phenomena in solid with defects – structural-scaling 

transitions and to propose the phenomenology of damage-failure transition [1]. The key results of the 

statistical theory and statistically based phenomenology are the establishment of two order 

parameters responsible for the structure evolution – the defect density tensor ikp  and the structural 

scaling parameter  
3

0R r  , which represents the ratio of the spacing between defects and 

characteristic size of defects. Non-equilibrium free energy F  represents generalization of the 

Ginzburg-Landau expansion in terms of mentioned order parameters – the defect density tensor 

(defect induced deformation zzpp   in uni-axial case) and structural scaling parameter  : 
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where zz   is the stress,   is the non-locality parameter, DCBA ,,, are the material parameters, 

*  and c  are characteristic values of structural-scaling parameter (bifurcation points) that define 

the areas of typical nonlinear material responses on the defect growth (quasi-brittle, ductile  and fine-



grain state) in corresponding  –ranges: 3.1,,1 **   cc . The damage kinetics 

is determined by the kinetic equations for the defect density p and scaling parameter   
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 where  ,p  are the kinetic coefficients, (...) t  is the variation derivative. Kinetic equations Eq.2 

and the equation for the total deformation pC   € (C€  is the component of the elastic 

compliance tensor) represent the constitutive equations of materials with mesodefects. Material 

responses on the loading realize as the generation of   characteristic collective modes – the solitary 

waves in the range of * c  and the “blow-up” dissipative structure in the range 1 c . 

The generation of these collective modes under the loading provides the change of the system 

symmetry and initiates specific mechanisms of the momentum transfer (plastic relaxation) and 

damage-failure transition on the scales of damage localization with the blow-up kinetics.  

The damage-failure scenario includes the “blow-up” kinetics of damage localization as the 
precursor of crack nucleation according to the self-similar solution: 
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where c  is the so-called "peak time" ( p  at ct   for the self-similar profile  f  

localized on the scale HL , 0,0  mG  are the parameters of non-linearity, which 

characterise the free energy release rate for  c  .  

The self-similar solution Eq.3 describes the blow-up damage kinetics for ctt   on the set of spatial 

scales KkkLL cH ,...2,1,  , where cL  and HL corresponds to the so-called “simple” and 

“complex” blow-up dissipative structures. Generation of the complex blow-up dissipative structures 

appears when the distance SL between simple structures approaches to the scale cL . Similar 

scenario of the “scaling transition” proceeds for the blow-up structures of different complexity to 

involve in the process of the final stage of damage localization the larger scales of material.  

The description of damage kinetics as the structural-scaling transition allowed the 
consideration of solid with defects as a dynamical system with spatial degrees of freedom 
(corresponding to the set of blow-up dissipative structures of different complexity) naturally 

evolve into a self-organized critical points related to critical value c of structural-scaling 

parameter   . Stochastic behaviour in this case can be linked with the dynamics of the critical state 

with the features of flicker noise, or 1 f - noise. The systems reveal the so-called self-organized 

criticality (SOC) with universal behavior that is typical for the late state evolution of dynamic 

systems when the correlation will appear on all length of scales and the system is critical.  

The self-similar nature of mentioned collective modes associated with damage localization 
zones has the great importance in the case of dynamic loading, when the “excitation” of 
these modes can lead to the subjection of relaxation and failure to the dynamics of these 
modes. The examples for this situation are the transition from the steady-state to the 
branching regimes of crack propagation, qualitative change of the fragmentation statistics 
with the increase of the energy density imposed into the material,  the self-similar features 
of  numerous spall failure (the so-called ”dynamic branch”), the delayed failure 
phenomenon in shocked materials (failure wave). 

 



2. Experiment 

2.1. Nonlinear crack dynamics. Crack branching 

 

The understanding of self-similar scenario of damage-failure transition stimulated our 

experimental study of crack dynamics for the explanation of mechanisms of transition from 

the steady-state to the branching regime, fragmentation statistics and failure wave 

phenomenon [2]. The stress field in the area of crack tip in the preloaded  (by external 

stress  ) PMMA plate and the diagram “crack velocity V  versus applied stress  ” are 

presented in Fig.1 according to the data of high speed framing with the usage REMIX REM 

10-8 camera  (time lag between pictures s10 ). Three characteristic regimes of crack 

dynamics were established in the different ranges of crack velocity: steady-state  

СVV  , branching CVV   and fragmenting BVV  ,  when the multiply branches of 

main crack have the autonomous behavior  (Fig.1, 2). Steady-state regime of crack 

dynamics is the consequence of the subjection of damage kinetics to the self-similar 

solution of the stress distribution at the crack tip (mechanically speaking to the stress 

intensity factor). Bifurcation point СV   ( RС VV 4.0  where RV  is the Rayleigh wave speed) 

corresponds to the transition to the regime, when the “second attractor” (with the symmetry 

properties related to the number of the blow-up dissipative structures) disturbs the steady-

state regime due to the excitation of numerous new failure hotspots (the daughter cracks 

having the image of mirror zones on the fracture surface). 
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Fig.1. Stress pattern for steady-state 

СVV  , branching CVV   and 

fragmenting BVV   scenario of crack 

dynamics. 

Fig. 2. Crack velocity V  versus   

stress  . 

 

 

The morphology of fracture surface corresponding to different regime of crack dynamics is 

presented in Fig.3.  The change of the symmetry properties of nonlinear system were 

studied under the recording of dynamic stress signal (polarization of laser beam) at the front 

of propagating crack in the point deviated on 4 mm from the main crack path. The 

corresponding phase portraits  ~  for steady-state and branching regimes of crack 

dynamics are presented in Fig. 4 and confirmed the existence of two “attractors”, which 

subject the crack dynamics. The first attractor is related to the intermediate asymptotic 

solution for the stress distribution at the crack tip. The second attractor has degrees of 

freedom corresponding to the set of blow-up dissipative structures of different complexity. 

 

 

 



2.2 Self-organized criticality and fragmentation statistics 

 

Fundamental failure and fracture properties of the material are central in determining the 

nature of the fragment size distribution. Fragment size distributions can range from the 

relatively tight exponential functions to power-law relations spanning a number of decades 

in fragment size. Onset of fracture asymptotes to a range of length scales in which 

destruction is self-similar and fractal, requiring that consequences, including the fragment 

size distributions, exhibit a power-law dependence on the length scale [3].   

The linkage of scenario of crack propagation and symmetry properties of dynamic system 

“solid with defects” allowed us to propose the interpretation of fragmentation statistics 

depending on the energy density imposed. A large number of the fragmentation statistics 

were proposed:  log-normal, power-low, exponential, combination of exponential and 

power laws. These theories have focused on the prediction of mean fragment size through 

energy and momentum balance principles, and on statistical issues of fragment size 

distribution. The energy density CEE   ( CE  corresponds to the critical velocity CV  of 

the steady state – branching transition) provides the stress intensity controlled failure 

scenario. The transient densities )( BCCB VVVEEE   lead to the exponential 

fragmentation statistics that is sensitive to both self-similar solutions: the self-similar stress 

distribution at the crack tip and collective blow-up modes of damage localization. The 

power low statistics is characteristic for the self-organized criticality (SOC) scenario [4] 

that was studied in recovery test for dynamically loaded rods of the fused quartz (Fig.5).  
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Fig. 3. Fracture surfaces 
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Fig. 4.  Stress phase portraits  ~ :  a - smV /200 ,    b - smV /615  

 

The power low spatial scaling of the fragment distribution was observed under the increase 

of the energy density BEE   ( BV V , Fig.2). This statistics corresponds to the multiscale 



damage localization according to the set of blow-up dissipative structures that have the 

image of the stochastic “cloud” on the phase portrait (Fig. 4)   

 

 

          

           

                                        

 

 
Fig. 5. Fragmentation pattern for different 

energies E in dynamically loaded fused 

quartz rods   

 

Fig. 6. Double logarithmic plot of 

cumulative distribution function of 

fragment sizes 

 

 

2.3 Resonance excitation of damage localization. Failure waves 

 

The solution Eq. 3 allowed us to link the self-similar features of failure kinetics  and generation of  

blow-up dissipative structures. It was established the correspondence of failure hotspots nucleation 

having the image of mirror zones in experiments with numerous spall failure in shocked cylindrical 

rods of PMMA and ultraporcelain [5,6]. The multiple mirror zones with an equal size were excited 

on different spall cross sections in the shocked rod when the stress wave amplitude exceeded some 

critical value corresponding to the transition to the so-called “dynamic branch” under spalling (Fig. 

7). The constant size of damage localization zones in the sample cross-sections at the dynamic 

branch corresponds to the regime of the resonance excitation of the blow-up dissipative structures of 

different complexity depending on the pulse rise time:  the smallest mirror zone size nucleates at the 

high pulse amplitude.  

Theoretically predicted low limit of damage localization scale CL  shows the existence of critical 

energy density, which provides the limit size of fragmented structure close to CL  and the 

degeneration of the power low statistics into the mono-disperse distribution. Such fragmentation 

dynamics can be linked to the failure wave phenomenon [7]. The important feature of failure wave 

phenomenon is that the velocity of failure wave doesn’t depend on the velocity of propagation of the 

single crack. The stored elastic energy in material is the main factor, which provides the ability of 

brittle solid to the generation of failure wave. 
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Figure 7.1.  Fracture time 
ct  for shocked rod of PMMA (1) and ultraporcelain (2) versus stress 

amplitude a . Insert: surface pattern with mirror zones in different spall cross sections [6]. 

 

The failure waves represent the specific dissipative structures (the "blow-up" dissipative structures) 

in the microshear ensemble that could be excited due to the shock wave pass [8]. Experimental study 

of failure wave generation and propagation was realized for the symmetric Taylor test on fused-

quartz rods [9]. Fig. 7a shows the processing of a high-speed photography (upper picture) for the 

flyer rod traveling at 534 m/s at impact. Three dark zones correspond to the image of impact surface 

(green triangle), failure wave (red square) and (blue diamond) the shock wave. The initial slope for 

the failure wave gives the front velocity skmV fw /57.1  that is close to traditionally measured in the 

plate impact test [9]. However, the experiment revealed the increase of failure front velocity up to 

the value skmV fw /4 .  Approaching of failure wave front velocity to the shock front velocity 

supports theoretically based result concerning the failure wave nature as “delayed failure” with the 

limit of “delay time” corresponding to the “peak time” in the self-similar solution [10]. 
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Fig. 7.  a – The Taylor test data; b - Simulation of shock wave (S) and failure wave (F) 
propagation for different time [**]. 

   

Numerical simulation (Fig.7b) of damage kinetics describes the self-similar “blow-up” 
dynamics of damage-failure transition, supports the assumption concerning the failure 
wave mechanism as delayed failure with the delay time of the development of “peak 

regime” of  “blow-up” dissipative structure. Time of the delay D  represents generally the 

sum of the induction time I  - the time of the formation of damage spatial distribution close 

to the self-similar profile, and the “peak time” С  - time of the “blow-up” damage kinetics. 
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Steady-state regime of failure wave front propagation can be linked with the successive 

„resonance” activation of “blow-up” dissipative structures in the condition, when СD   . 
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