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Abstract. Due to the development of nano-technologies in electronic industry and bio-

mechanics the raised interest appears to the problem of gaining the periodic structures on the 

surface at buckling in the micro-level. One of the simplest ways to solve this problem is to use 

the compressed plate on the soft elastic foundation [1-3]. The presented paper is devoted to the 

investigation of problem of gaining the chessboard-like buckling surface structures. 

 

Introduction 

The survey of some experimental works in which the chessboard-like buckling modes were 

observed one could find in [4]. It is shown that the critical initial deformation  and the 

corresponding surface wave length L at buckling may be calculated from the bifurcation 

equation, but the buckling mode remains unknown. To find the analytical solution for buckling 

mode it is necessary to study the initial supercritical behavior of the system. In [1, 3] it is shown 

that the mode 

 

 (1) 

 

with p=q (the chessboard-like mode) corresponds to the minimum supercritical energy among all 

other modes of type (1). More buckling modes (including triangular and varicose modes) are 

studied in [5] and again the chessboard-like mode corresponds to the minimal energy. In the 

present paper we will establish that any function , where  satisfies 

the Helmholtz equation , is the solution of the bifurcation equation. These 

functions wil be examined and it will be shown that the chessboard-like mode again gives the 

minimum energy. 

We are going to study a plate consisiting of two-layered with similar mechanical properties on 

the soft elastic foundation taking into account two reasons of the appearance of initial stresses in 

the plate. The first one – is the difference in temperature extension between the foundation and 

the plate. Another one – prestresses in a thin upper layer of the nano-dimensional thickness 

grown on the lower plate layer [6]. If the equilibrium distances between atoms of crystal lattices 

of the layers are different then the initial stresses appear in the upper layer. In is known that, e.g. 

for atom lattices of silicon Si and germanium Ge the corresponding strain depends on the relative 

substance of Ge in the rigid mortar SiGe and could be up to 0.04. 

In addition it will be demonstrated that the buckling amplitude could be controlled by the 

changing of the initial compression of a plate. 

 

Bifurcation Equation and its Solutions 

Let consider the stability loss of an uniformly compresses elastic plate on the soft elastic 

foundation. We will assume that the length L of the surface wave at buckling is essentially larger 

than the shell thickness h and smaller than the depth of foundation H (Fig. 1). 

 



  
 

Fig. 1. Plate on an elastic foundation. 

 

Then the buckling problem is reduced to the buckling of an infinite plate on the elastic half-

space. This model is used in [2] where the metallic plate on the polymeric foundation is studied. 

Under this assumptions the Kirchhof-Love model could be accepted, and the critical 

compression $T_*$ could be found from the bifurcation equation 

 

 
(2) 

 

Here  is the normal deflection; x, y are the Cartesian coordinates on the plate; D is the 

bending stiffness of the plate;  is the Laplace operator; T is a compression stress resultant in the 

plane of plate (T>0 at compression); P is the normal stress between plate and foundation. 

Supposing the full contact between the plate and the foundation we will take into account only 

the normal plate deflections. Naturally the stress  depends on the deflection . If 

, then [7,8] 

 

 

(3) 

 

where ,  are the Young modulus and the Poisson ratio of the foundation. It is possible to 

prove that the same relation (3) is valid for any deflection  having the form 

 where function  satisfies the Helmholtz equation . 

Relations (2) and (3) yield 

 

 (4) 

 

whence it follows (after minimization by r) the expressions for the critical values  and of the 

wave number r and the initial compression T [1,3]: 

 

 

(5) 

 

Initial Super-Critical Deformation 

Let seek the function  which describes the buckling mode. Following [1] and [3] we will 

assume that  and will try to investigate the initial super-critical behaviour of the system. 

The general form of the initial potential energy density Q is 

 



 
(6) 

 

where  is the relative growth of compression T compared with the critical value 

,   is the (equivalent) Young modulus of plate and h is its thickness. The values  and 

 depend only on  and  and they equal to 

 

 

 

(7) 

 

Here S is the cell of periodicity and brackets  denote averaging. The same relations (7) are 

valid for the almost periodic functions . 

The first summand in (6) is obtained in [3]. To deliver the second summand one could calculate 

the density of plate extension-shear 

 

 

 

(8) 

 

where  and  are the tangential deflections of the points belonging to the plate 

neutral plane. Here we neglect the energy of the non-linear deformation of foundation. 

Supposing that the function  is given we could find functions u, v imposing 

minimum of the functional  and then, after reduction, we could obtain the second summand 

in (6). 

 

Criterion Functional 

After minimization of (6) by  the minimal value  of the potential energy density and the 

corresponding value  of the deflection amplitude are expressed as 

 

 

(9) 

 

Let  and  be two solutions of the equation . If  then we may 

expect that the appearing buckling mode  is preferrable as compared with 

the mode . Referring  as the criterion functional and putting 

 without loss of generality one could conclude that . 

 



 
 

Fig. 2. Dependence . 

 

So, a number of functions  satisfying the equation  are examined. For the 

rectangular buckling mode  equation (9) yields 

 

 

(10) 

 

and comparing the rest of the rectangles  is achieved for a 

square (p=q, Fig. 3a). For the right triangle (Fig. 3b)  . 

The dependences  given by (6) for two functions  (chessboard-like and triangular) are 

shown in Fig. 2. It is clear that the equilibrium state  is stable because in this point where 

the energy is minimal. 

Some possible buckling modes (chessboard-like (a), triangular (b), rectangular (c), and one-

dimensional (d)) are shown at Fig. 3. 

 

 
 

Fig. 3. Solutions of the bifurcation equation. 

 

All the examined modes 

 

 
(11) 

 

also lead to the inequality . All these modes are the partial cases of relation (11). The 

corresponding values of the criterion functional are given in Table 1 for . 



 

Table 1. Values of the criterion functional . 

 

See Fig. 3 Buckling mode 
  

a chessboard-like 
 

0.482 

b triangular 
 

0.565 

c rectangular 
 

0.596 

d one-dimensional 
 

0.799 

 

Therefore we may expect that the initial supercritical behavior of a compressed plate on the soft 

elastic foundation is a chessboard-like one. 

Besires that, it follows from (9) that . That is, changing the compression T 

one can control the buckling amplitude . In the next section we will study the dependence of 

critical compression on the temperature and on atomic structure of a two-layered plate. 

 

Two-layered Compressed Plate on Elastic Foundation 

Let consider the stability of a two-layered compressed plate lying on an elastic foundation 

(Fig. 4). We will denote the Young modules, the Poisson ratios, the thicknesses, the initial 

deformations and the coefficients of temperature extension of a foundation (f), and of a plates 

(p1, p2), respectively as 

 

 
(12) 

 

Here h is the plate thickness. Also we will assume for simplicity that  and 

, and again, in order to use the Kirchhoff-Love model (1), that 

 

 (13) 

 

 
 

Fig. 4. Two-layered plate on elastic foundation. 

 

For considered problem the parameters in (1) and (6) are given by 

 

 

(14) 



 

 

 
 

where  is the changing of temperature, and  is the initial deformation in the upper layer 

related to the difference of equilibrium distances between atoms of crystal lattices of layers. The 

deformation  could appear only if the elastic properties of the first and the second layers are 

very similar.  

To the approximate estimation of the parameters describing the critical situation let put 

. Then formulas (5) and (14) yield the critical relation between parameters: 

 

 

(15) 

 

In order to receive evidence that the foundation is soft enough one could take, e.g.  

(then c=0,423), ,  and then the 

relation (15) yields . 
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