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Abstract. Plastic flow evolution was investigated for various metals and alloys, which differed 

in chemical bond and crystal lattice type (BCC/FCC/HCP), structural state (single-

crystal/polycrystalline) and deformation mechanisms (dislocation glide/twinning). On the base of 

conclusive evidence it is attempted to explain the phenomenon of plastic flow localization by 

invoking a fundamental principle of quantum mechanics. 

 

Introduction  

This paper was originated as a series of experimental study of plastic flow that was carried on for 

the recent two decades. The main findings of this study show that the plastic flow tends to localize 

at all the scale levels [1]. For a researcher in plasticity physics the macro-scale level is obviously 

the most convenient one since it serves to provide a unified explanation for a variety of plastic flow 

localization phenomena with striking regularities which are usually left unexplained. Thus it is 

found that (i) the plastic flow would exhibit a localization behavior from yield point to failure; (ii) 

each flow stage is characterized by the emergence of a specific localization pattern; (iii) the 

occurrence of localization patterns is explained as due to the generation of autowaves (self-excited 

waves); (iv) the latter waves are associated in turn with the processes of self-organization of defects. 

 

 
Fig. 1. Localization zones (dark bands) in the test sample 

 

The kinematic observations were carried on with the aid of a specially developed technique 

related to speckle photography [1]. A typical example of autowave patterns occurring in the 

deforming medium is shown in figure 1. The propagation velocity, wavelength and frequency 

were defined experimentally for the autowaves in question. The values obtained differ 

fundamentally from those observed for elastic (ultrasound) waves [2] and plasticity waves [3], 
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Dispersion relation for localized plastic flow autowaves: experimental results 

The nature of autowave processes involved in plastic flow localization is conveniently addressed 

using the dispersion relation  k  derived for easy glide and linear work hardening stages [4], 

i.e.  

 

   200 kkk   ,                                                                        (1) 
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where  0  and 0k  are constants which depend on the stage of work hardening and the kind of 

material (see figure 2). Note that for the stage of easy glide  and for the stage of linear 

work hardening
As is seen from figure 3, equation (1) can be brought to canonical form by the substitution of 

 ~
0   and   21

00 sign
~ 

 kkk to give 
2~

1~ k (here ~  is the dimensionless 

frequency; k
~

is the dimensionless wave number and  s i g n  is a signum function of the 

coefficient ). Thus we obtain the appropriate dispersion relation of quadratic form, which 

satisfies the Schrödinger nonlinear equation [5] and is descriptive of self-organization processes 

in nonlinear media. This is a formal proof of the fact that self-organization and plastic flow 

localization are closely involved processes. 
 

A correspondence between the localized plastic flow autowave and the effective mass 

The effective mass is conventionally found
6
 from the dispersion law  k as  

 

  122 
 dkdmaw  ,                                                                           (2) 

 

where 2h  is the Planck constant. The effective masses obtained for single-Fe crystals 

and polycrystalline Al are 
(Fe)

awm  = 0.6 amu and 
(Al)

awm = 0.1 amu, respectively. Note that effective 

masses of the same magnitude can be calculated from the de Broglie equation
 
[6] as  

 

awaw Vhm  .                                                                                     (3) 

 

Similar calculations were performed by addressing autowaves in [7]. To test the validity of this 

idea, awm  values were calculated from (3), using the autowave characteristics obtained for a 

number of metals and alloys [1]; the results obtained are listed in the table. Apparently, the 

calculated values have about the same scale magnitude, i.e.  awe mm 1 amu (here me is the 

rest mass of electron; 1 amu = 1.67·10
27

 kg is atomic mass unit). The average mass calculated 

from (3) for the same metals is awm = (2.20.3) ·10
27

 kg = 1.320.2 amu.   

 

  
Fig. 2. Dispersion relation  k for easy glide 

(1) and linear work hardening stages (2): 

single-crystal Cu, Sn and Fe (●);single-Fe 

crystal (■); polycrystalline Al (▲) 

Fig. 3. A generalized relation  k
~~  for 

easy glide (1) and linear work hardening 

stages (2): single -Fe crystal and 

polycrystalline Al  

 

Then the volume was calculated as awm  (here awm is the effective mass and  is metal 

density); hence the effective size 31d . The ratios ionrd   listed in the Table suggest that the 

volumes and ion radii calculated for the studied metals [8] are close in magnitude.  



The average ionrd obtained for all the studied materials is 0.51±0.1.  Normalization of the 

values awm was performed in atomic mass units, Mat. Then the dimensionless mass was 

introduced, i.e. 1 ataw Mms . As is seen from figure 4, the value s grows linearly [9] with 

increasing electron concentration n as 
 

nnss   22

0 1017.0106.1 .                                                            (4) 

 

The latter dependence is determined by the viscous drag of dislocations due to the occurrence of 

phonon and electron gases in metals [1]. 

A question I would like to address at this point is whether it is possible to propose that a certain 

quasi-particle exists which corresponds to the localized plastic flow autowave generated in the 

deforming solid. Using equation (3), the mass and the effective size of the quasi-particle can be 

calculated from the data listed in the table. The values obtained are 0.5  awm  2 amu 

and ionrd  . The use of this approach which has received wide application in the physics of 

solids [10], enables one to unambiguously relate the characteristics of the deformation 

macrolocalization process to those of the crystal lattice.   

Table. Microscopic characteristics calculated from the data on localized plastic flow autowaves 

 

 
Cu  

·10
3 510awV  

awm  210s  ·10
-3 2710

 910d  910ionr  

ionr

d  

[m] [m/s
 

] [amu] [kg/m
3
] [m

3
] [m] [m] 

4.5 8.0  1.1 1.74 8.9 0.21 0.059 0.128 0.46 

Zn 4.9 7.6 1.07 1.66 7.1 0.25 0.063 0.071 0.89 

Al  7.2 11 0.50 1.87 2.7 0.31 0.068 0.143 0.48 

Zr  5.5 3.5 2.05 2.24 6.5 0.53 0.081 0.16 0.50 

Ti 7.0 5.0  1.1 2.3 4.5 4.2 0.075 0.146 0.51 

V 4.0 7.0 1.42 2.81 6.1 0.33 0.069 0.135 0.51 

Nb 4.5 4.0 2.21 2.5 8.6 0.41 0.074 0.069 1.08 

-Fe  5.0 5.1 1.76 2.81 7.9 0.33 0.069 0.127 0.54 

-Fe 4.3 5.2 1.77 3.0 7.9 3.75 0.072 0.127 0.57 

Ni  3.5 6.0 0.89 3.24 8.9 0.32 0.068 0.125 0.54 

 

 

 
Fig. 4. Dimensionless mass s as a function of electron concentration n; 

correlation coefficient ~0.95 

 

 

M
et

al
 



A two-component model of plastic flow 

I would like to single out the physical aspect of the problem considered herein. This consists in 

the fact that a unified account is sought for two closely interrelated categories of events. Indeed, 

an elementary plasticity act (shear) is capable of generating an acoustic pulse, which in turn 

would initiate a new shear. Thus one has to account for the causal relationship between the two 

kinds of events occurring simultaneously in the deforming medium, i.e. the dislocation shears, 

which initiate the relaxation of stresses, and the acoustic emission pulses, which are responsible 

for the redistribution of stresses. Taking this approach, the idea of spontaneous layering
1
 as 

applied to a system undergoing self-organization was formulated. Spontaneous layering would 

cause formation of two interrelated subsystems, an informative and a dynamic one. For the case 

of deforming medium, the choice of appropriate subsystems appears to be sufficiently simple. 

Thus the role of information signals, which cause relaxation of shears, is assigned to acoustic 

emission pulses (phonons) generated by other, similar shears. The resultant redistribution of the 

elastic field would initiate new shears in the dynamic dislocation subsystem.  

The spatial scales of macro- and microscopic quantities under discussion differ crucially in the 

range 10
6 

< ionr <10
7
. Nonetheless, it is established that the product of two macro-

characteristics of autowave processes, i.e.
awV , and the product of two micro-characteristics of 

the respective metal, i.e. Vrion , are related linearly as 

 

 VrV ionMeaw  ,                                                                               (5) 

 

where V is the rate of transverse elastic waves [11]. The numerical factor differs in the range 

0.52  Me  for various metals, with the average being  0.62.The physical meaning 

of the latter factor might be deduced from equation (5) represented as 
 



  VrhVhm ionMeawaw

1  ,                                                                      (6) 

 

where phion mVrh  is the phonon mass. From equation (6) follows that phaw mm 6.1 , i.e. 

 

phawph mmm 25.1  .                                                                                (7) 

 

The latter equation corresponds to the mechanism of dislocation generation due to phonon 

condensation [12]. Thus, a significant role in the evolution of localized plastic flow autowaves is 

assigned to the lattice characteristics.  

The above should not be regarded as a mere formalization of the relationship between the 

characteristics of plastic flow localization on the one hand and the acoustic characteristics of the 

deforming medium on the other. A particular emphasis is placed herein on the role of the phonon 

subsystem in the evolution of localized plastic deformation, which involves (i) relaxation acts 

due to the motion of dislocations, dislocation ensembles and localized plastic flow autowaves 

and (ii) generation of elastic waves due to the acoustic emission, i.e. redistribution of elastic 

strains involving large-scale and small-scale relaxation events. 

Generally, the above phenomena are studied independently. However, these might be grouped 

together in accordance with the concept [13] to address a system undergoing self-organization, 

which separates into two related subsystems, i.e. an informative and a dynamic one. Acoustic 

emission signals serve as deformation carriers for the deforming system. These are generated by 

relaxation shears, which initiates redistribution of elastic strain fields to cause new shears in the 

dynamic subsystem of mobile defects. 

Apparently, relation (6) serves to formalize the connection between the kinetic characteristics of 

the above subsystems, i.e. the propagation velocity of elastic waves and the motion rate of 

dislocations in the vicinity of stress concentrators, respectively. In the frame of the proposed 



model, acoustic emission pulses would control the development of localized plastic flow, while 

those having sufficiently high energy would activate new plasticity events [14]. 

 

Important features of two component model 

The nature of self-organization occurring in complex media is being simulated by various 

models that have one basic assumption in common [14]. Built into these models is the notion that 

complex open systems capable of self-organization tend to separate spontaneously into an 

information (control) subsystem and a dynamic one. This notion can be extended to take account 

of deforming media. In this instance, it may be reasonably assumed that acoustic emission 

signals that are emitted during elementary relaxation acts of plastic flow would play the role of 

an information subsystem and the processes of motion of dislocations or dislocation ensembles 

that are responsible for material form changing would represent a dynamic subsystem. In the 

framework of the given approach, the process of plastic flow would be associated with 

interrelated concerted events occurring in the defect and phonon subsystems of the deforming 

crystal (see fig. 5). Thus, the proposed two component model differs radically from various 

dislocation models that have been put forward to account for the evolution of defect subsystem 

alone. The evolution of plastic flow in each localized deformation nucleus correlates closely with 

the other nuclei although they are separated from one another at a macroscopic distance of the 

order of  (autowave length). In order to attribute for the latter fact, it should be born in mind 

that acoustic emission impulses play an important role in plastic deformation, taking into 

account, in particular, their great path length.  

 

 

 

 

 

 

 

 

 

 

Fig. 5. Scheme of principle for two component model of plasticity  

 

The above approach is consistent with the two-component plastic flow model proposed in [1] in 

which equations of reaction-diffusion type are used to describe the autocatalytic and the damping 

factor, i.e. plastic deformation  and elastic stresses , respectively. The rates of variation of 

deformations and stresses are given above as    
 Df ,  and    

 Dg , , 

respectively. The nonlinear functions   ,f  and   ,g  have the meaning of local rates of 

variation of deformations and stresses, respectively, and the “diffusion addends”  D  and 

 D are responsible for the macro-scale re-distribution of deformations and stresses.  

In the context of the proposed model, these equations are taken to describe variations occurring, 

respectively, in the dynamic and information subsystems that differ in scale. The subsystems’ 

scales enter into the diffusion coefficients that are represented in a general form as D V L  . For 

the information subsystem, the quantity L   is of the order of specimen length; for the 

dynamic subsystem, this is close to the size of a dislocation ensemble, i.e. L d   . The 

numerical d  ratio can be accounted for by comparing the transport coefficients from 

equations above for deformations and stresses.  

Thus, the two component model being developed is based on the assumption that the following 

well-known effects are closely interrelated, i.e. 

Deforming media as an open system 

Information subsystem (phonons) Dynamic subsystem (dislocations) 

F 

F 



- deformation proper that is caused by the motion of lattice defects,  in particular, dislocations, 

i.e. the dynamic subsystem;  

- acoustic emission that accompanies the action of any plastic flow mechanisms, i.e. the 

information subsystem.  
 

Autowave generation at stress concentrators 
As discussed above, the localized plastic flow waves would be generated in all deforming 

materials. Therefore, it needs to be ascertained what gives rise to the waves in question. It is 

believed that the wave generation is due to the stress concentrators which play an important role 

in the plastic flow evolution [1]. On this assumption a series of experiments was conducted to 

elucidate the cause-and–effect relationship between the localized plastic flow waves and the 

macroscopic stress concentrators occurring in the deforming solid. 

 Accurately modeling a macroscopic concentrator of stresses involves growing a fatigue crack in 

a plastically deforming material. These simulations were conducted in order to establish the 

regularities exhibited by plastic flow dynamics by viscous fracture. To this end, an in situ 

investigation of the deforming specimen was carried on to trace the changes in the plastic 

deformation zone located at the tip of a developing crack. The geometry of test specimens and 

the loading conditions differ significantly from those described in the monograph [1]; therefore, 

the procedure used should be described in some detail. The test specimens having dimensions 

902010 mm were cut out from a 0.2 mm sheet of low carbon steel (0.08 % С). In the middle 

of the test specimen was an 8-mm V-notch, which had curvature (Ø 0.2 mm) at its tip where a 2-

mm fatigue crack was to be grown. The three-point loading was conducted on a universal testing 

machine ‘Instron-1185’, with the separation between the loading device supports being 80 mm 

and the crosshead motion rate, 0.5 mm/min.   

For the specimen under loading, in situ recording of displacement vector fields was conducted on 

an ‘ALMEC’ unit, using the method of double exposure speckle photography. The registration 

was carried on step by step, with each step corresponding to a 100-μm displacement of the 

movable support. The displacement vector fields were recorded for individual points on the 

specimen surface from the beginning of loading to specimen fracture to an accuracy of ~1 μm. 

Special software was designed for speckle photograph decoding, which enables one to obtain 

data files storing displacement vectors U and point co-ordinates. The vector U is preset with the 

respective modulus U and the angle  the vector makes with the specimen axis x. The location of 

the crack’s tip O(x0, y0) is pre-assigned in the same co-ordinates.  

In the context of linear fracture mechanics, the displacement vector field at the crack’s tip is 

determined in the polar co-ordinates r and  chosen on the strength of problem symmetry and is 

given by the following expression of the form 

 


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2

3
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2
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cos)12[( 222221 

kkk
Gk

rK
U                

   2

1

22 ])12(
2

3
sin

2
sin)12(2  kk


,                                                 (8) 

 

where r is the distance counted over the ray  from the crack tip O;  is the angle between the  

direction of the ray r and the direction of crack propagation y; G is the shear modulus; 1K  is the 

stress intensity coefficient; k is the constant determined by the Poisson ration of material and by 

the kind of stressed state. It follows from expression (6.17) that for elastically deformed material 

zone, 1 2~U r . On the border between the elastically and plastically deformed material volumes 

the latter regularity would apparently break down, which enables detection of such a border, 

using the following procedure.  



The displacement vector U is first measured at a step of 3º for the angle  over 60 rays ir  to give 

a total of 100 U values; then the distance from the crack tip *r is determined. The experimental 

dependences  21rU  obtained for the latter sections of the rays ir  are interpolated by the least-

squares method to give, in accordance with (8), linear dependencies. The correlation coefficient 

obtained for these dependencies serves as a criterion of linearity. The current U values are 

eliminated successively on going from the crack tip *r over each ir  ray to give a maximal 

constant value of the correlation coefficient. As a result, a set of boundary distances is obtained 

such that in the region *rr   the regularities of linear fracture mechanics would hold good, with 

the geometry of *r arrangement defining the boundary between the elastically and plastically 

deforming specimen zones.  

With growing total deformation, the plasticity zone is found to change gradually. At first the 

zone would mainly evolve in the direction y in which the original crack propagates. Before the 

onset of yielding, it is anomalously elongated in the direction  = 20 ...25º. The advance of the 

plastic zone border might be likened to the Lüders band propagation, which is observed for the 

yield plateau in materials whose flow curve shows a sharp yield point. Plastic zones generally 

have broken borders, which is probably due to the spatial inhomogeneity of plastic flow. The 

above suggests, however, that plastic deformation would also exhibit a temporal inhomogeneity. 

Thus local shear macro-bands occurring in certain areas of the deforming specimen might 

disappear to emerge and develop in other regions. Therefore, in the entire half-space in front of 

the crack tip no steady growth of the plasticity zone is observed; instead portions of its border 

would advance in a jump-wise way.  Thus the emergence of the above pattern is due to a more 

complicated stressed state of material at the crack tip relative to that observed by the Lüders 

band propagation in tensile specimens.  

Of great significance is the data on material behavior in a plasticity zone located in the vicinity 

of stress concentrator where the relationships of linear fracture mechanics would not hold good 

and the material would deform plastically. Strong evidence for the behavior of material under 

loading in the above zone has been provided by the analysis of plastic tensor component fields 

for a planar case  

 


 

 


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r
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All the plastic distortion tensor components, i.e. rUrrr  ,   rUUr r   1 , 

  rUrUUr rrr    121 , can be derived from the experimental data array 

 yx,U , using numerical differentiation of displacement vector εij values from the polar co-

ordinates r and  obtained for each individual point on the specimen surface where the vector U 

is determined for loading time increments.  

Figure 6 illustrates the spatial distributions of plastic distortion tensor components against 

loading time. Evidently, an ordered space-periodic system of localized deformation nuclei 

emerges in the plasticity zone, with the separation between the maxima being ~2...3 mm. The 

above pattern can be regarded as an early stage of the generation of localized plastic flow wave. 

With increasing total deformation, the shape of generated waves would change, which might be 

attributed to the inhomogeneity of displacement field caused by the stress concentrator (crack). 

 

Summary 

When considered in the context of the proposed model, the interaction between localized 

deformation nuclei is attributed to the exchange interaction by phonons. In this scenario it 

appears reasonable to assume that to the autowave of localized deformation corresponds a quasi-

particle whose characteristics are determined by the autowave characteristics.  



Further development of the proposed concept would enable one to group the localized plastic 

flow together with such phenomena as superfluidity and superconductivity, which are taken to be 

macro-scale manifestations of the deforming medium’s quantum properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. A picture of autowave process generation in the vicinity of stress concentrator О 
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