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Abstract. The effect of steady-state thermal loading on a cracked layer is investigated. A Volterra 

type thermo-elastic dislocation is introduced in a layer which is free of traction on the boundaries. 

The assumptions of quasi-static, steady-state condition are employing and the uncoupled theory of 

thermo-elasticity is considered. The Fourier transformation is utilized to obtain temperature 

distribution and stress fields in the layer containing dislocation. The temperature field is also derived 

in the layer with specified temperature at the boundaries and in the absence of any defects. By 

means of the distributed dislocation technique, the dislocation solution is introduced into the layer to 

derive integral equations for dislocation density functions on the surfaces of cracks. These equations 

are Cauchy singular and are solved numerically. The solutions are employed to determine stress 

intensity factors (SIFs) for cracks in both cases of the impermeable and partially permeable heat 

flux. 

 

Introduction  
Structures containing defects are vulnerable to thermal loading. The mutual effects of heat flux and 

thermal stress on interacting cracks may induce excessive SIFs resulting in the instability of cracks 

and the failure of structures.  The stress analysis of cracked elastic bodies subjected to thermal loads 

was carried out by several researchers. Some investigations regarding uncoupled thermal analysis of 

half-planes and layers containing cracks relevant to the present study, are enumerated here. A half-

plane weakened by an insulated crack under uniform heat flow was solved by Sekine [1] and modes 

I and II SIFs were determined for a crack with arbitrary orientation. Nied [2] studied the effects of 

thermal shocks in a strip weakened by an edge crack. The strip was insulated at a boundary and 

cooled by surface convection at the other boundary. Lam et al. [3] analyzed mixed mode fracture of 

cracked strips with varying crack surface heat conductivity under uniform heat flow. Transient 

thermal stress in a strip with an edge crack was the subject of investigation by Rizk and Radwan 

[4].The elastic strip was insulated at one face and cooled suddenly on the other boundary. A strip 

containing a crack perpendicular to the boundary under sudden surface heating was solved by Rizk 

[5]. Jin and Noda [6] considered a graded half-plane with exponentially varying material properties 

having an edge crack. The medium was under steady heat flux and thermal SIF for various material 

constants was determined. Liu and Kardomateas [7] modeled an insulated crack in an anisotropic 

half-plane under a uniform heat flux by a continuous distribution of dislocations to determine 

thermal SIFs. Their solution was based on the formulations derived by Clements [8] and Sturla and 

Barber [9] in conjunction with the image method. The problem of two periodic edge cracks in an 
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isotropic elastic strip located symmetrically along the free boundaries and quenched by a ramp 

function temperature change was investigated by Rizk [10].  

In the present article, a layer with free boundaries is considered. A Volterra type thermo-elastic 

dislocation is introduced and the temperature distribution and stress fields are derived in the layer 

under the assumptions of quasi-static, steady-state employing the uncoupled theory of thermo-

elasticity. The stress components and heat flux are Cauchy singular at dislocation location. The 

distributed dislocation technique is utilized to perform a set of integral equations for the layer 

weakened by multiple cracks subjected to general temperature distribution at the boundaries. These 

equations are Cauchy singular. Only the case of the complete opening of cracks is studied. A crack 

surface may be partially heat permeable.  The integral equations are solved numerically and SIFs are 

determined. Several examples are solved for layers with cracks having different geometries and the 

effect of the ratio of heat permeability on SIFs is studied.  

 

Solution of thermo-elastic dislocations. An elastic isotropic layer which is free at the boundaries is 

considered, Fig.1. The layer is stress free at the ambient temperature    . A thermo-elastic 

dislocation is located at a point with coordinates (   ).The dislocation line is extended in the 

positive direction of the x-axis. In the uncoupled theory of thermo-elasticity, utilizing Fourier’s law 

of heat conduction and under steady-state situation, the temperature field is governed by the Laplace 

equation 
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Fig.1. Schematic view of a layer with edge dislocations 
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The temperature field of the thermo-elastic dislocation in the layer is defined by the following 

equations 
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where  ( ) is the Heaviside step function,    is the temperature discontinuity on the line of 

dislocation and    is the heat flux in the y-direction. The last equation of Eqs 2 implies the 

continuity of heat flux crossing the dislocation line and by means of Fourier law reads as  

  (    
 )      (    

 )    
(3)  

The solution to Eq. 1 subject to the above-mentioned boundary conditions is accomplished by means 

of the complex Fourier transformation with respect to the variable  , Sneddon [11]. Carrying out a 

straightforward manipulation, the temperature field is obtained. In a material with thermal 

conductivity  , the heat flux    in the direction of a unit vector  ̅ is 
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(4)  
Substituting the temperature field into Eq. 4 , results in 
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(5)  

Consequently, by virtue of Eq. 5 heat flux is Cauchy singular at dislocation position, i.e.,       , 

as    √   (   )   . The uncoupled theory of thermo-elasticity is the solution of the 

following equation   

    
  

   
       

(6)  

In the above equation,   is Airy stress function and define as        (   )       

       (   )             (   )     , μ is the shear modulus of elasticity, for plane stress 

the Kolosov constant   (   ) (   ), and     , where υ is the Poisson’s ratio of material 

and    is the coefficient of thermal expansion; these quantities for plane strain are        and 

     (   ). The stress and displacement fields for the thermo-elastic dislocations in the layer 

are represented by 
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where    and    are the Burgers vectors for the climb and glide edge dislocations, respectively. The 

solution to Eq. 6 subjected to boundary conditions (7) is achieved using Fourier transform. The 

stress components by virtue of Airy stress function are expressed as 
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where the non-singular functions    
    {   }, are defined in the Appendix. From Eq. 8, it is 

evident that stress components are Cauchy singular at the dislocation location.  

Solution of the crack problem. The solution to thermo-elastic dislocation accomplished in the 

preceding section is employed to analyze layers with several arbitrarily oriented cracks. Utilizing  

Eqs 8 and 5 the stress and heat flux components caused by the climb, glide and thermal dislocations 

located at a point with coordinates (     ) where dislocation line is parallel to the x-axis read 
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The coefficients of        and    in stress fields (9) are obtained from Eq. 8 and are presented in the 

Appendix. Let N be the number of cracks in the strip. A crack configuration with respect to 

coordinate system x, y may be described in parametric form as 

     ( )      ( )                            {       }                  
(10)  

The moveable orthogonal coordinate system n-s is chosen such that the origin moves on the crack 

while s-axis remains tangent to the crack surface.  Suppose climb, glide and thermal dislocations 

with unknown density functions    ( ),    ( )  and    ( ), respectively, are distributed on the 

infinitesimal segment √[  
 ( )]

 
 [  

 ( )]
 
   on the surface of the j-th 

 
crack where       . 



The heat flux and traction components on the surface of the i-th crack at a point ( ( )  ( )), due to 

the presence of the above mentioned distribution of dislocations on all N cracks’ surfaces yield 
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Utilizing Eq. 9, after making the replacement(     )  (  ( )   ( )), leads to the kernels of 

integral Eq. 13 as 
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Where     is for      ,     is for        and θ is the crack angle with x-axis. The system of 

integral equations (13) is Cauchy singular for     as    . By virtue of the Bueckner’s 

superposition theorem the left side of first two Eq. 13 are zero; because un-crack layer is free of 

traction. The left side of third Eq. 13 is the heat flux with opposite sign obtained from un-crack layer 

under thermal load on its boundaries. For a partially heat permeable crack Eq. 17 should be 

multiplied by the coefficient of heat permeability      , where    , is for a thermally 

insolated crack. The single-valued property of displacement and temperature fields out of a crack 

surface yields the following closure conditions 
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For embedded cracks, Eqs. 13 and 15 should be solved simultaneously. 

Results and Discussion. The geometry and material properties of the layer in the ensuing examples, 

wherein only full opening of cracks occur, are identified as: layer thickness,      ( ), 

coefficients of thermal conductivity and expansion        (     ) and         
     (   ), respectively, Poisson’s ratio  and plain strain condition prevails. At the 

ambient temperature     layer is stress free. Then temperature on the boundaries of layer changes 

to 

 (   )     (   )     
  | | 

(14)  

where        ( ) and     (   )  In a partially heat permeable crack, the coefficient of 

permeability is taken as      . The deviser for making SIFs dimensionless for straight cracks 

is      |  |√  , where   is half of a crack length. In the first example, an oblique crack with 

variable distance from y-axis is analyzed, Figs (2a-b). The crack is horizontal and SIFs increase 

once it approaches upper layer which is attributed to the higher temperature gradient at this region 

where thermal load is applied. The crack is completely opened from middle surface of strip, since 

simple bending occurs under thermal loading.  

 
Fig. 2. SIFs of a crack moving vertically, (a-mode I), (b-mode II). 

 

The interaction of two identical parallel cracks A and B with length      where crack A is fixed and 

crack B is changing location in horizontal direction is investigated, in second example. Figures 3 

show the SIFs of crack B where the both of cracks are completely open. The mode I SIF is 

symmetric with respect to the y-axis. The variation of SIFs of crack A is much smaller than that of 

crack B. At far distance from the y-axis, heat flow and stress fields attenuate leading to the decrease 

of SIFs.  
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Fig. 3. Interaction of two identical parallel cracks moving horizantaly, (a-mode I SIF), (b-mode II 

SIF). 

 

In the above examples, the increase in heat permeability of the crack diminishes the maximum 

values of SIFs.  
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Appendix 

The coefficients in Eq. (8) are as follows 
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where   {   } and coefficients are 
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where   {   }. In the above equations 
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The coefficients in Eqs (12) in integral form are 
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where   {   }. 
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