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Abstract. The comparative analysis of two nonlocal criteria of quasi-static bridged crack growth is 
considered. These criteria are based on two conditions of fracture: a) the condition for the crack tip 
advancing; b) the condition of bonds rupture at the trailing edge of bridged zone. The first 
conditions in these criterions are different and they are based on the consideration of the energy 
release and consumption rates or on the force approach. The second conditions in both criteria are 
the same – it is the condition of the limit stretching at the trailing edge of the bridging zone. Based 
on these two fracture conditions the regimes of the bridged zone and the crack tip equilibrium and 
growth are considered. Analytical application of these criterions is performed for the problem of the 
straight crack in homogeneous plane with the rectilinear law of bond stresses. 
 
Two-parametric fracture criterions 
The criterion based on the energy condition. The state of the crack with bridged zone (see Fig.1) 
limit equilibrium corresponds to the following condition [1-2] 
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where ( )ijw ε is the density of the deformation energy in the body volume , v ijε  are the components 

of the strain tensor;  are the tractions and displacements at the body boundary and (or) crack 
surfaces ,  is the density of the strain energy of the bonds in the crack bridging zones,  is 
the crack opening in the bridging zones of area . 
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The terms in the brackets in the relation (1) represent the strain energy release rate at creation of a 
new crack surface and the last term is the rate of the energy absorption in the crack bridging zone. 
Note, that within the framework of the model the strain energy release rate and the rate of the energy 
absorption by bonds depend on the bridging zone size and bonds characteristics. The equilibrium 
bridging zone size is not assumed to be constant during a quasi-static crack growth. It can be 
determined from condition (1) while the searching for the critical load needs additional conditions of 
the bond rupture. 
In the case of an interface crack the strain energy release rate (tipG d ),  can be defined through the 
stress intensity factors [1, 2] as follows 
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where the parameter  depends on the elastic properties of joined materials and 2
B IK K K= + 2

II  is 
the modulus of the stress intensity factors due to the external loads and the stresses in the crack 
bridging zone. 
The stress intensity factors (SIF)  for the interface bridged crack were determined in [1]. ,I IIK

The expression for the rate of the energy absorption by bonds ( ),bondG d  can be written as [2] 
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where the second term is the density of deformation energy allocated at break of the bond at the 
trailing edge of the crack bridging zone. 
For a homogeneous material or an adhesion layer connecting different materials the following 
relations are held [2] 
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In this case the expression (3) completely coincides with similar expressions from the Ref. [1]. 
For a weak matrix material (  we suppose )bcG G 0cG =  in (3). In this case ( ), 0bondG d →  if 

 and therefore this approach coincide with the Barenblatt’s model in this limit, see details 
in [1-2]. 

/d → 0

Conclusively, in the general case the following values of  for different types of materials are used 
in (3) 
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where  is the volume fraction of the matrix material and 2mc mγ  is the matrix toughness. 
The condition of the crack tip limit equilibrium (1) can be rewritten as follows taking into account 
the notation from the formulae (2) and (3) 
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Condition (6) is necessary but insufficient for searching for a limit equilibrium state of the crack tip 
and the bridging zone. This condition enables us to determine the bridging zone size,  such that 
the crack tip is in an equilibrium state at the given level of the external loads. To search for the limit 
state of both the crack tip and bridging zone within the framework of the model one should 
introduce an additional condition, e.g., the condition of bond limit stretching at the trailing edge of 
the bridging zone 
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where crδ  is the bond rupture length. 

Solving simultaneously equations (5)-(6) we can determine the critical external loads 0σ , the 
critical bridging zone size  and the adhesion fracture resistance at the crack limit equilibrium 
state for the given crack length and bond characteristics. 

crd

 
The criterion based on the force condition. This criterion is also based on the two fracture 
conditions. The first of these two conditions is the force condition [3] 
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where is the SIF due to the external loading, is the SIF due to the bridged stresses applied to 
the crack surfaces in the bridged zone,  is the fracture toughness of a matrix, - fracture 
energy of a matrix. 
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The second condition of the force criterion is coincided with eq. (6). 
 

Crack with uniform bridging stresses 

Analytical consideration of the criterions is performed for the problem of the straight crack in a 
homogeneous plane with the rectilinear law of the constant bond stress. In this very simple case the 
normal bridging stresses in the crack bridging zone are prescribed, uniformly distributed along the 
bridging zone and independent on the crack opening. The normal displacements of an upper crack 
surface under an external stress applied normal to the crack plane are given by (plane stress state) 
[4] 
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where ,  is Young modulus of material, h d 0σ  is an external stress applied normal to the 
crack plane,  is the normal bridge stress in the crack bridging zone of the size , and 0P d ( ), ,F x h  is 
the source function given by [4] 
 

                                 
2 2 2 2

2 2 2 2

( )(
( ) ln

( )(
x x

F x
x x

2

2

)
)

ξ ξ
ξ

ξ ξ

− − − −
, , =

− + − −
   (9) 

 
After some calculations (see the details in [2]) the following relationships for the strain energy 
release rate and for the rate of the energy absorption by bonds can be obtained from the equations 
(2) and (3) 
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The first fracture condition (5) can be written using the equations (10)-(13) as follows 
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The second fracture condition (6) in this case is 
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The equations (14) and (16) is the nonlinear algebraic system and the solution of this system (if it 
exists) gives us the external critical stress and the size of the crack bridging zone in the crack limit 
equilibrium state. The nonlinear algebraic system is solved numerically and the main parameters 
governing the solution of the system are η  and 0R . If the solution of the system does not exist 
(under the fixed values of) then, from mechanical point of view, the size of the crack is less than the 
crack size associated with initiation of quasi-static crack growth. In this case the sub-critical crack 
growth is observed [2]. 
 
Comparison of the energy and force fracture criterion 
We will now carry out a comparative analysis of the fracture criterions considered above for a crack 
with bonds in the bridged zone: the fracture criterion based on the eqs. (14) and (16) (subsequently 
referred to as the energy criterion) and the fracture criterion with a force condition for the advance 
of the crack tip (subsequently referred to as the force criterion) for a problem with constant stresses 
in the bridged zone. 
We shall assume that the conditions for the rupture of the bonds at the trailing edge of the bridged 
zone are identical in both criteria and are determined by the equation (6). The equation for the force 
fracture criterion when there are constant stresses in the bridged zone, which is analogous to the first 
of the condition (5), will be based on the eqs. (7). 
Using expressions (4.3) and (4.6) from [2] we convert condition (7) for the case of the constant 
bridged stresses to the dimensionless form 
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We obtain the equation for determining the length of the bridged zone of the crack in the limit 
equilibrium state in accordance with the force fracture criterion from eqs. (17) and (16), on 
eliminating the parameter 0Z  from them. We have 
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After solving this equation, the critical external load can be determined, for example, from an 
expression analogous to (4.14) of the Ref. [2]. 
On the other hand, by analogy with eqs. (4.15) of the Ref.[2], (18) can be considered as an equation 

for determining the parameter 0crR R=  for a specified value of cr
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From eq. (19), we obtain 
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When , from the solution (20), we have 0crt →
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An expression for crR  which is identical to (21), follows from expression (4.16) of Ref. [2] when 

, which is evidence of the equivalence of the fracture criteria being considered in this case. 0crt →
For a comparative analysis of the energy and force fracture criteria, we will consider relations (4.15) 

of Ref. [2] and (20) for the parameters 0
cr

cr

dR =  for these fracture criteria as a function of the 

relative length of the bridged zone of a crack  in the limit equilibrium state. For small values of 
, both criteria give close results (see Fig. 2, 

crt

crt 1η = ), and the difference increases as the relative size 
of the bridged zone increases. Note that, in the case of a fixed relative size of the bridged zone, the 
energy criterion gives a greater value of the parameter crR  than the force criterion, which, in its turn, 
corresponds to a shorter crack and a greater critical external stress. The increase in the critical load 
when the energy criterion is used is explained by taking account of the work done in deforming the 
bonds. When η →∞ , both criteria give similar results for 0 1crt< ≤  and 2crR η→  when . 1t →
The results in the case of a matrix with a low fracture toughness ( 0η = ) are fundamentally different 
(see Fig. 3). In the case of a short bridged zone the results are close but, already when , a 
considerable divergence is observed. Note that the force criterion is inapplicable in the case of a 

0.1crt >



crack filled with bonds when 0η = , since expression (8), which has been written taking account of 
the finiteness of the stresses ( ), gives a zero opening of the crack. 0brK K∞ − =
In Fig. 3, when , we have 1crt = 0crR =  in the case of the force fracture criterion, which formally 
corresponds to a crack of infinite length and, correspondingly, to an bridged zone of infinite size. 
The maximum value of the parameter  is reached when . When 0.368m

crR ≈ 0.632crt ≈ m
cr crR R> , 

cracks, which satisfy the limit equilibrium conditions, do not exist within the framework of the force 
fracture criterion. 
Hence, the energy and force criteria for the development of a crack give close estimates of the 
fracture parameters in the case of crack with a short bridged zone and, also, in the case of a 
composite material with a matrix possessing a high fracture toughness. 
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Fig. 1. Bi-material plate with bridged interface crack. 



 
Fig.2. Dependence of crR  on the relative bridged zone size, the criterion comparison, 1η = . 

 
Fig.3. Dependence of crR  on the relative bridged zone size, the criterion comparison, 0η = . 


