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Abstract. Fracture criteria for predicting of extension of an interface crack and of the crack growth 

direction in a bimaterial consisting of a homogeneous and a functionally graded material (FGM) with 

systems of internal defects are studied. The bimaterial is subjected to a heat flux and a tensile load 

applied at infinity. It is assumed that the thermal properties of the FGM have exponential form. Young’s 

modulus and Poisson’s ratio are assumed to be constant. In the previous papers [1-4] asymptotic 

analytical formulas for the stress intensity factors (SIFs) at the interface crack tips were obtained as a 

series of a small parameter (the ratio between sizes of the internal and interface cracks). These SIFs are 

used in fracture criteria to obtain the possible direction of crack propagation and critical loads. The 

following fracture criteria are used: the maximum circumferential stress criterion and the minimum strain 

energy density. The influence of the geometry of the problem (location and orientation of cracks) and the 

parameters of non-homogeneity of FGMs on the main fracture characteristics is investigated.  

 

Introduction  
The paper is devoted to the problem of the thermal fracture of a bimaterial consisting of a homogeneous 

and a functionally graded material (FGM) with an interface crack and internal defects subjected to a heat 

flux and a tensile load applied at infinity. It is assumed that the thermal properties of the FGM have 

exponential form. Young’s modulus and Poisson’s ratio are assumed to be constant. Thus, the material is 

elastically homogeneous, but thermally non-homogeneous. This kind of FGMs includes some 

ceramic/ceramic and ceramic/metal FGMs. The problem is studied for the case when an interface crack is 

much larger than internal cracks in the FGM. In the previous papers [1-4] asymptotic analytical formulas 

for the stress intensity factors (SIFs) at the interface crack tips were obtained as a series of a small 

parameter (the small parameter is equal to the ratio between sizes of the internal and interface cracks). 

These SIF functions contain parameters of the geometry of the problem and parameters of the non-

homogeneity of the FGM.  

The present work is devoted to the analysis of fracture criteria for the prediction of extension of the 

interface crack and of the crack growth direction in FGM/homogeneous bimaterial. From experimental 

and theoretical investigations it is known that the crack deflection from initial crack propagation occurs 

under mixed mode loading and this deflection depends on the details of Modes I and II loadings. For 

FGMs the near-tip mixity can arise by virtue of the property variation in the material. Besides, the 

interaction of cracks, defects and interfaces adds additional near tip mixity. In this connection the 

following fracture criteria are used: the maximum circumferential stress criterion [5,6,7] and the 

minimum strain energy density [8,9]. The parametric analysis shows the dependence of the initial 

interface crack propagation on the location and orientation of the crack systems. It is also shown that the 

non-homogeneity parameter of thermo-conductivity and thermal expansion coefficient notably affect the 

interface crack deflection angle. The influence of these parameters on the main fracture characteristics is 

investigated. A comparison of these results for the considered criteria is performed.  

 

Formulation of the problem and solution  

Geometry of the problem and assumptions. Fig. 1a shows the geometry of the problem. A bimaterial is 

composed of a FGM (denoted by number 1) and a homogeneous material (denoted by number 2). The 

bimaterial is perfectly bonded with the exception of an interface crack of length 2a0. It is assumed that the 



 

 

FGM contains N cracks of length 2ak. Cartesian coordinates (x, y) are centered at the midpoint of the 

interface crack; the x-axis lies along the interface line. Local coordinate systems (xk, yk) are attached to 

each internal crack. The crack position is determined by the defect midpoint coordinate and an inclination 

angle to the interface, i.e. to the x-axis (Fig. 1a). The bimaterial is subjected to a heat flux of intensity q 

and a tensile stress P applied at infinity. The cracks are thermally isolated and traction free. 

It is assumed that the thermal conductivity coefficient and the thermal expansion coefficient are 

yekyk 
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where the constant k0 is the thermal conductivity, 0  is the thermal expansion coefficient of the interface 

and of material 2,   and   are the non-homogeneity parameters for the FGM. The Young’s modulus 

and Poisson’s ratio are assumed to be constant, Ej = const, j  = const (j = 1, 2). 

 

 

 
 

(a) 

  

 
 

(b) 

 

 
 

(c) 

Fig. 1. (a) The geometry of the problem; (b) The angle 0  of crack deflection; (c) The scheme of 
locations of the interface crack and microcracks. 

 

The uncoupled, quasi-static thermoelastic theory is applicable to this problem that is the temperature 

distribution is independent of the mechanical field, and the solution consists of the determination of the 

temperature field and the determination of the thermal stresses. 

Thermal and thermoelastic problem formulations. It is supposed that the cracks are thermally isolated 

and continuity conditions for thermal fluxes and temperatures are fulfilled at the interface. Using the 

superposition principle the temperature field in the bimaterial with cracks is presented as a sum of two 

terms: the temperature distribution in a bimaterial in the absence of cracks and the temperature 

perturbation caused by the cracks. For the crack problem the temperature perturbation should be 

determined.  

The mechanical boundary conditions are: the cracks are traction-free and the continuity conditions at 

the interface are assumed, i.e. the stresses are equal and displacements are equal. Using the superposition 

principle the problem is transformed to the problem with boundary conditions on the crack lines. Because 

we suppose that the material is elastically homogeneous we can use directly the method presented in 

[7,10]. The detailed formulation and solution of these problems can be found in [1-4]. 

Solution by small parameter method. The solution is derived for a special case where an interface 

crack is significantly larger in size than internal cracks in the FGM. The asymptotic analytical solution of 

the problem is obtained as a series of a small parameter which is equal to the ratio between sizes of the 

internal and interface cracks. The method was first suggested by Romalis and Tamuzs at 1984 and then 

was used for different macro-microcrack interaction problems for homogeneous materials [7,10].  



 

 

It is assumed that all internal cracks in the FGM have the same size 2ak = 2a (k = 1, 2, ... , N), for 

example, they have the characteristic size of a grain size of the material. Suppose also that 022 aa  . In 

this case the small parameter is = a/a0 and 1 . The solution is obtained in closed form up to 2  (see 

[1] for details) 

2
02000 )()()(  fff  .         (2) 

Here the function f0 is the solution of thermal and thermoelastic problems. The zero-th approximation f00 

in Eq. 2 corresponds to an isolated interface crack and the second one f02 is taking into account the 

influence of each microcrack on the interface crack. Using this solution the SIFs are obtained. 

Stress intensity factors. In this work we consider elastically homogeneous materials so that we can use 

the classical definition of the stress intensity factor. It should be noted, that the crack tip singular field in 

FGMs has the same form as in homogeneous media [11] and the concept of the stress intensity factors 

can be also applied directly to cracks in FGMs. Besides, the interface crack between the FGM and the 

homogeneous material with smooth transition between these materials is also a classical crack with 

square-root singularities at the crack tips.  

For a uniform heat flux and a tension load P acting at infinity the stress intensity factors at the 

interface crack tips are obtained up to 2
 as [1,3,4] 
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or writing full expressions we have 
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and the mechanical part of SIFs 
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where Ik0
T
 , Jk

T
 and Jk are  
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and 011 ,, kkk mnm  and 0kn  are  
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Besides 0
0 /azw kk   is the non-dimensional complex coordinate of the midpoint of the cracks. In Eqs. 

15–22 “Re” and “Im” denote the real and imaginary parts of complex numbers correspondingly. In 

Eqs. 3-7 the upper part of the "  " or "  " signs refers to the right tip and the lower part to the left tip of 

the crack. 

For a single crack (without microcracks) subjected to a heat flux normal to the crack surfaces the 

thermal stress intensity factors are given as [5] 

000,0 aaqkkk h
tIII            (12) 

and for the crack under the tensile load P remotely applied normal to the crack the stress intensity factors 

are 

.0,0  
III kaPk           (13) 

The interaction of cracks leads to mixed mode conditions in the interface crack surfaces, i.e. kI 0  in the 

first case and kII 0  in the second one. The influence of both thermal and mechanical loading results in 

mixed-mode conditions near the interface crack. 

 

Fracture criteria and direction of crack propagation  
From experimental and theoretical investigations of cracks under mixed-mode loading, it is known that 

the cracks deviate from their initial propagation direction. For prediction of the crack growth and 

direction of this growth a fracture criterion should be applied. Two criteria will be considered: the 

maximum circumferential stress criterion [5,6,7] and the criterion based on the strain energy density 

function [8,9]. 

Maximum circumferential stress criterion. Using the maximum circumferential stress criterion (see for 

references [5,6,7]) the direction of the initial crack propagation (Fig. 1b) is evaluated as 

  IIIIII kkkk 48arctan2 22 
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and the critical stresses can be calculated from the expression 
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Here KIc is the fracture toughness of the material.  

For a single interface crack under heat flux the SIF factor kI is equal to zero and Eq. 14 gives the 

fracture angle  5.700   (the upper sign is for the right crack tip, the lower – for the left one). The 

initial direction of crack propagation in the general case is determined from Eq. 14 by substitution of the 

SIFs 
Ik  and 

IIk  from Eqs. 4-7. For the case of a heat flux some results for the fracture angle at the 

interface crack tips in FGM/homogeneous bimaterials were presented in [2]. 

Strain energy density criterion. Now the strain energy density criterion is used for fracture 

interpretation of the results. In [8,9] the minimum strain energy density factor criterion was introduced. 



 

 

The local strain energy density is given by rSdVdW //  . Based on the stress intensity factor solutions 

kI and kII, the strain energy density (SED) factor S(kI, kII) is defined as  
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and  43  is for plain strain, μ is the shear modulus and ν is Poisson’s coefficient. In Eq. 17   is the 

polar angle of the polar coordinate system (r,  ) with the origin at the crack tip. SED factor determines 

the mixed mode effects, i.e., the direction of crack initiation as well as the critical condition under which 

the crack would initiate. 

The criterion can be expressed mathematically as 
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The crack growth occurs when the SED factor reaches critical value, i.e. S = Scr for 0  . Here S is 

Eqs. 16 and 17. 

In the SED criterion the angle 0  depends on Poisson’s ratio. For Mode II cracks the maximum stress 

criterion predicts a fixed angle 0
0 5.70 , which corresponds to a material with zero Poisson’s ratio in 

SED criterion. For 3.0  the angle of crack propagation is 0
0 3.82 . 

 

Parameters of materials 

The formulae for SIFs Eqs. 4-11 and hence the formulae for other fracture characteristics Eqs. 14-18 

contain geometrical parameters of the problem, such as, length of cracks, coordinates of the centers of 

cracks wk and inclination angles θk of small cracks to the interface, and parameters of materials, the main 

of them are inhomogeneity parameters of thermal conductivity and of the thermal expansion coefficient. 

The influence of these parameters on the fracture characteristics at the interface crack tips can be 

investigated. 

The values of the inhomogeneity parameters are estimated based on the following considerations. From 

exponential form of the thermal conductivity Eq. 1 the inhomogeneity parameter  is )/ln()/1( 21 kky . 

That means, the value depends on the ratio of material properties and the value of y. We consider an 

infinite domain and it is supposed that the value of  changes slowly, we take 0.10.1   . The same 

concerns the inhomogeneity parameter of the thermal expansion coefficient  ( )/ln()/1( 21 tty   ). 

Tables 1 and 2 give the thermal properties [12, 13] of some FGM/homogeneous material combinations 

and corresponding values of the inhomogeneity parameters  and ω. The Young’s moduli of these 

materials are similar. 



 

 

 

Table 1. Ceramic/Ceramic FGMs 

FGM/H (MoSi2/ Al2O3)/ Al2O3    (Molybdenum disilicide MoSi2 , alumina Al2O3) 

 Thermal expansion coeff. 

*10
-6 

 K
-1

  

 Thermal conductivity  

Wm
-1

K
-1

 

 

MoSi2 α t1 5 α t1/ α t2 =1 

ω = 0 

k1 52 k1/ k2 > 1 

δ > 0 Al2O3 α t2 5 k2 25 

FGM/H (Al2O3/ MoSi2)/ MoSi2 ω = 0  δ < 0 

FGM/H (SiC/ MoSi2)/ MoSi2   (Silicon carbide SiC, molybdenum disilicide MoSi2) 

 Thermal expansion coeff. 

*10
-6 

 K
-1

  

 Thermal conductivity  

Wm
-1

K
-1

 

 

SiC α t1 4 α t1/ α t2 <1 

ω < 0 

k1 60 k1/ k2 > 1 

δ > 0 MoSi2 α t2 5 k2 52 

FGM/H (MoSi2/ SiC)/ SiC ω > 0  δ < 0 

FGM/H (SiC/ TiC)/ TiC  (Silicon carbide SiC, titanium carbide TiC) 

 Thermal expansion coeff. 

*10
-6 

 K
-1

  

 Thermal conductivity  

Wm
-1

K
-1

 

 

SiC α t1 4 α t1/ α t2 <1 

ω < 0 

k1 60 k1/ k2 > 1 

δ > 0 TiC α t2 7 k2 20 

FGM/H (TiC/ SiC)/ SiC ω > 0  δ < 0 

Table 2. Ceramic/metal FGMs 

FGM/H (ZrO2/ Ni)/ Ni    (Zirconia ZrO2, nickel Ni) 

 Thermal expansion coeff. 

*10
-6 

 K
-1

  

 Thermal conductivity  

Wm
-1

K
-1

 

 

ZrO2 α t1 10 α t1/ α t2 <1 

ω < 0 

k1 2 k1/ k2 < 1 

δ < 0 Ni α t2 18 k2 90 

FGM/H (Ni/ ZrO2)/ ZrO2 ω > 0  δ > 0 

FGM/H (ZrO2/ Steel)/ Steel 

 Thermal expansion coeff. 

*10
-6 

 K
-1

  

 Thermal conductivity  

Wm
-1

K
-1

 

 

ZrO2 α t1 10 α t1/ α t2 <1 

ω < 0 

k1 2 k1/ k2 < 1 

δ < 0 Steel α t2 12 k2 20 

FGM/H (Steel/ ZrO2)/ ZrO2   ω > 0  δ > 0 

 

Numerical results  
The influence of different arrays of microcracks on the thermal SIFs at the interface crack was investigated 

in the case of a heat flux in [1-3] and in the case of thermo-mechanical loading some results for SIFs can be 

found in [4]. It was assumed that all microcracks have the same angle of inclination  to the x-axis. The 

microcrack centers were presented by smayrnax nn /,/ 00    (n, m = 1, 2,...), with r =s = 5, 

wn = (xn + i yn)/ a0 (Fig. 1c).  One of the calculation schemes of the system of microcracks in the FGM is 

shown in Fig. 1c. SIFs kI,II are normalized by k
0
 and denoted by K1 and K2 in the figures. k

0
 is | kII | Eq. 12 in 

the case of only thermal loading and kI Eq. 13 in the case of tensile loading. It is supposed that k
0
 = | kII | = kI 

in the case when both thermal and mechanical loads are applied. The calculations were performed with 

 = 0.1. The non-dimensional inhomogeneity parameters of thermal conductivity and of thermal expansion 

are a0 and a0, but in the figures the designation  and  is used.  



 

 

 

 

 

 

(a)  (b) 

Fig. 2. The case of a heat flux and a tensile load. Influence of system of microcracks (Fig. 1c with =0) 

on SIFs K1 at the right interface crack tip for (a) >0 and (b) <0.  

 

Fig. 2 shows SIF K1 at the right interface crack tip as functions of the inhomogeneity parameter ω and for 

different δ (the angle  = 0) for both thermal and mechanical loadings. Because the mechanical part of the 

SIFs does not depend on inhomogeneity parameters, the curves of K1 are similar as in Fig. 6 in [3], but the 

values of K1 are different for these two cases. The difference in values of K1 due to change of  is up to 

35% (maximum is reached for ω = 1). In Fig. 2 the value of K1 is positive for all parameters. A part of K1 is 

larger than 1 and a part is less than 1, K1 = 1 corresponds to the value for a single crack. The example of an 

FGM/homogeneous bimaterial is (SiC/TiC)/TiC (Fig. 2a), and in this case a system with cracks increases 

K1, but for (TiC/SiC)/SiC (Fig. 2b) the same system of cracks decreases K1 (at the same loading 

conditions). 

 

 

 

 

(a)   (b)  

Fig. 3. The case of a heat flux. The fracture angle   as function of inclination angle  at the right 
interface crack tip: (a) the maximum stress criterion, ω=1; (b) SED for different ν, =1 and ω=1.  
 

Fig. 3a presents results for the fracture angle   calculated by Eq. 14 for ω=1 and different  and Fig. 3b – 

by Eq. 16-18 with ω=1 and  =1. The case 0  in Fig. 3b corresponds to the maximum stress criterion 

prediction. Fig. 4 shows non-dimensional critical loads (Eq. 15) for different  and for ω=0,1. 



 

 

  

(a) (b) 

Fig. 4. The case of a heat flux. The critical load Pcr as function of inclination angle  at the right interface 

crack tip: (a) ω=0 and (b) ω=1 (maximum stress criterion). 

 

Conclusions  
Mathematical modeling of the fracture processes in the vicinity of an interface crack in functionally 

graded/ homogeneous bimaterials with internal defects subjected to tensile loading and a thermal flux 

remotely applied normal to the interface surface was performed. Asymptotic analytical solution for a 

special case when an interface crack is significantly larger in size than internal cracks in the FGM was 

used in two fracture criteria for the determination of the direction of the initial crack propagation and 

critical loads. The main fracture characteristics were obtained as functions of geometry of the problem 

and non-homogeneity parameters of FGMs. Examples of actual material combinations were presented, 

e.g. ceramic/ceramic TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also ceramic/metal FGMs, e.g., 

zirconia/nickel and zirconia/steel. Optimal crack configurations can be determined at which the stress 

intensity factors at the interface crack tips possess a minimal value or at which the critical loads are 

maximal and, accordingly, the interface crack failure will be minimal. 
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