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Abstract. The concept of scaling and intermediate asymptotics is used for analysis of the creep-

damage crack tip fields. It is shown that the intermediate asymptotics for stresses, strains and 

continuity parameter in the vicinity of the crack tip can be introduced. Using the intermediate 

variable the class of self-similar solutions to coupled (creep-damage) crack problems is solved. The 

constitutive model is based on continuum damage mechanics. The conventional Kachanov-

Rabotnov creep-damage theory is utilized to study the asymptotic behavior of damage in the region 

very near the crack tip. The totally damaged zone where the damage (integrity) parameter reaches its 

critical value is assumed to exist in the vicinity of the crack tip. Using the similarity variable the 

asymptotic solutions to mode I, II and mode III crack problems are obtained. The asymptotic stress, 

creep strain rate and damage fields near the crack tip are analyzed by solving nonlinear eigenvalue 

problems resulting in a new far stress distribution. The configurations of the totally damaged zone 

governed by the new far stress field are found and analyzed. 

Introduction  
Analysis of effects of material damage on the stress and strain fields near crack tip in non-linear 

materials is the very important problem for evaluation of crack behavior in elements of structures. 

The influence of damage on crack-tip fields has been the subject of many papers, especially for 

cracks in brittle materials [1], elastic-plastic-brittle cracks [2, 3], creep cracks [4-6] and fatigue 

cracks [7]. Thus, the phenomenon of crack growth in materials undergoing deformations coupled 

with damage has been investigated extensively over the past twenty years. Some of the essential 

aspects of the considered set of two-dimensional crack problems and the results obtained can be 

highlighted. 1. The damage gives significant influence on the stress and strain (strain rate) fields 

near the crack tip. 2. The mathematical structure of governing equations is affected by the modelling 

of damage. 3. While the Hutchinson-Rice-Rosengren (HRR) – field of non-linear fracture mechanics 

always shows the stress singularity at the crack tip for any finite value of the stress exponent, the 

preceding material damage in front of the crack tip decreases the singularity, and may give non-

singular stress field. 4. The totally damage and (or) active damage zone (process zone) need be 

modelled in the crack tip region.  

In the present work the asymptotic stress, strain rate and continuity fields in the vicinity of mode I 

and mode III cracks in damaged materials are obtained using the self-similar variable proposed by 

Riedel [8]. The form of the similarity solution has been introduced by Riedel. However there exist 

no solutions where the similarity property of damage mechanics equations is used. The advantage of 

a similarity solution is that it reduces the number of independent variables in the problem by one. 

This simplification allows us to gain insight into the time evolution of the near tip stress fields and 

the far field boundary condition. 

 In discussing crack growth on the basis of damage mechanics it is advantageous to introduce 

the term "totally damaged zone". The totally damaged zone can be interpreted as a zone occupied by 



microcracks oriented orthogonally to the main crack. Inside the totally damaged zone (TDZ) the 

damage involved reaches its critical value (for instance, the damage parameter reaches unity) and a 

complete fracture failure occurs. In view of material damage stresses are relaxed to vanishing. 

Therefore one can assume that the stress tensor components in the TDZ equal zero. Outside the zone 

damage alters the stress distribution substantially compared to the corresponding non-damaging 

material. Well outside that zone the damage parameter is equal to 1. 

 In the present study mode I, II and III crack problems for power-law creeping materials are 

considered by employing the self-similar variable on the assumption that the TDZ in the vicinity of 

the crack tip exists. 

Self-similar variable and self-similar representation of the solution. A static mode I crack 

problem in a damaged creeping material under the plane strain and plane stress conditions is 

considered. The equilibrium and compatibility equations in the polar coordinate system can, 

respectively, be written as 
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The creep power-law constitutive equations in the coupled creep-damage formulation are described 

by 
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where   222 34/3   rrre  for plane strain conditions, 


























 





 r

n

e
r

rr

n

err

n

e
rr

BBB
111

2

3
,

2

2
,

2

2

































    (3) 

where 2222 3   rrrrre  for plane stress conditions. 

The damage evolves according to  

 meqvAdtd  //  .         (4) 

The traction-free conditions on the crack surfaces yield 

0),(,0),(    rr r .       (5) 

The remote boundary condition has the form  
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The dimensionless constant nI  and the  -variation functions of the suitably normalized functions 

),(~ nij  depend only on the creep exponent n . 

 If damage develops in the region which is small compared to the creep zone (the small scale 

damage conception), the boundary conditions (6) require that the stress field must approach the 

Hutchinson-Rice-Rosengren (HRR) field at large distances from the crack tip.  

 Dimensional analysis of Eqs. (1) – (6) shows that the damage mechanics equations must 

have similarity solutions of the form [8] 
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with the similarity variable  
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The dimensionless functions ),( Rij  and ),( R  are as yet unknown. The validity of these 

similarity presentations of the solutions should be verified by insertion of (7) into governing 

equations and boundary conditions. For a more general remote boundary condition  
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one can introduce the similarity variable  
1/( )sm

mR r tAC     

This self – similar variable introduced is the self-similar variable of the second kind (incomplete 

similarity). The self-similar variable and the ordinary differential equations following from the 

continuum and damage mechanics equations have the unknown parameter s . For arbitrary values of 

this parameter the solution of the equations does not exist. The equilibrium and compatibility 

equations hold their forms while the kinetics evolution law of damage takes the following form 

 meqvsmRR  // ,         (8) 

where  )1(1  eeqv is the damage equivalent stress in terms of the similarity 

variable. 

The Airy stress potential ),( rF can be used to obtain 
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It is assumed that the Airy stress function and the integrity (continuity) parameter at large distances 

from the crack tip  R  are separable and can be expressed as series as 
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Where 1,1,1,1 332211   ssss . 

The three-term asymptotic creep strain rate expansions as R for plane strain conditions are 

determined by the formulae 
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Using the asymptotic expansions (9), (10) and the compatibility equation (2) one finds 
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Taking into account Eqs. (13) one can obtain the nonlinear ordinary differential equation with 

respect to )()0( f : 
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where, for brevity’s sake, the following notations are adopted  
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The fourth order nonlinear ordinary differential equation (14) with the boundary conditions  

  0)(,0)(
')0()0(   ff        (15) 

defines a nonlinear eigenvalue problem in which the constant   is the eigenvalue and )()0( f  the 

corresponding eigenfunction.  

Nonlinear eigenvalue problem. The problem of stress singularity is reduced to a nonlinear 

eigenvalue problem. Nowadays the whole eigenspectrum and orders of stress singularity at the crack 

tip for a power-law medium are of prevailing interest. The whole eigenspectrum stipulates the 

possible stress distributions in the neighborhood of the crack tip in a damaged medium. The 

shooting procedure commonly employed for nonlinear eigenvalue problems becomes multi-

parametric for mode I and II crack problems and the numerical results obtained need to be proved 

additionally. To overcome this difficulty in the problem the perturbation theory approach has been 

applied. A further reason to consider this problem is in the need for a formula expressing 

eigenvalues for the nonlinear problem through eigenvalues of the linear problem and the creep 



exponent. The method based on the perturbation theory proposed in [9] and developed in [10] 

allows us to find the whole eigenspectrum and orders of stress field at the crack tip for a power-law 

medium. 

 The underlying idea of the method is to consider the expansion representing the eigenvalue 

  of the nonlinear eigenvalue problem (14), (15) for an arbitrary exponent n  to be a sum of the 

eigenvalue 0  corresponding to the “undisturbed” linear problem )1( n  and a small parameter   

which quantitatively describes the nearness of the eigenvalues: 

  0 .           (16) 

The creep exponent n  and the stress function )()0( f  can be presented as formal series with respect 

to   
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where )(0 f  denotes the solution of the linear problem )1( n . Introducing (16), (17) into (14) and 

collecting terms of equal power in  , the set of linear differential equations is obtained. The first 

equation describing the linear problem has the following solution 
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The boundary conditions lead to the well known characteristic equation 02sin 0  . As is 

expected, the eigenspectrum of the linear problem distributes discretely and has infinite number of 

eigenvalues 2/0 m . Considering mode I crack problem and odd integers m  here one can 

represent the solution of the linear problem in the form 
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The dimensionless angular function )(1 f  must satisfy the fourth order linear ordinary differential 

equation 
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Boundary conditions follow from the traction free conditions on the crack faces: 
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Thus, the two-point boundary value problem (18), (19) for nonhomogeneous fourth order linear 

differential equation is formulated. It is known that if the boundary value problem the homogeneous 

differential equation has a nontrivial solution then there can exist no solution of the corresponding 

nonhomogeneous differential equation unless the solvability condition is realized.  

 The solvability condition can be formulated by using a solution of the self-adjoint problem 
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where u  is the solution of the self-adjoint problem corresponding to (18), (19), )(g  is the right 

side of (18). The solvability condition (20) enables to obtain the first perturbation of n : 
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and, consequently, the two-term asymptotic expansion for the exponent n  has the following form 
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The solvability condition of the boundary value problem for Eq. (21) allows to find  
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Thus the three-term asymptotic expansion for the creep exponent has the form 
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For some eigenvalues of the linear problem 0  one can obtain the four-term asymptotic expansions: 
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Thus, using the perturbation method the whole set of eigenvalues for mode I and mode II crack 

problem for a power-law creeping material is determined. The three-term (or four-term) asymptotic 

expansions for the creep exponent allowing to find the eigenvalue via Eq. (16) for the nonlinear 

eigenvalue problem are obtained. 

Geometry of the totally damaged zone (TDZ). The eigenvalues resulting in the contours of the 

TDZ converging to the limit contour have been found. It turns out that the HRR stress field does not 

govern the geometry of the TDZ. The new intermediate stress asymptotic is obtained. The shapes of 

the TDZ obtained for the new stress asymptotics at large distances from the crack tip for plane strain 

and plane stress conditions are shown in Fig. 1, 2, where 1 – the contour given by the two-term 

asymptotic expansion of the integrity parameter, 2 – the contour given by the three-term asymptotic 



expansion of the integrity parameter, 3 – the contour given by the four-term asymptotic expansion of 

the integrity parameter. 

   
Fig. 1. The boundary of the TDZ for different values of material constants (plane strain conditions) 

    
Fig. 2. The boundary of the TDZ for different values of material constants (plane stress conditions) 

 

Finite difference method solution. To justify the asymptotic solution obtained one can address to 

the direct numerical integration of equations formulated in terms of the similarity variable. The 

numerical solution has been found by the finite difference method. The numerical solution achieved 

exhibits the same characteristic features of the self-similar ansatz revealed by the approximate 

approach: that is, the intermediate asymptotic behaviour of the stresses at distances considerably 

beyond the TDZ length but at yet still small distances comparatively with the crack length occurs. It 

is interesting to represent the effective stress in double logarithmic coordinates (Fig. 3). It is seen 

that there are two rectilinear parts: one linear region corresponds to the HRR-filed while the order 

linear part corresponds to the new intermediate asymptotic solution. The intermediate asymptotic 

solution is the stress and integrity distributions valid for times and distances at which the influence 

of fine details of initial and boundary conditions is lost [11-14].  

Summary  
The class of self-similar solutions to coupled (creep-damage) crack problems is presented. The 

constitutive model is based on continuum damage mechanics. The conventional Kachanov-

Rabotnov creep-damage theory is utilized to study the asymptotic behavior of damage in the region 

very near the crack tip. The totally damaged zone where the damage (integrity) parameter reaches its 

critical value is assumed to exist in the vicinity of the crack tip. Using the similarity variable the 



asymptotic solutions to mode I, II and mode III crack problems are obtained. The asymptotic stress, 

creep strain rate and damage fields near the crack tip are analyzed by solving nonlinear eigenvalue 

problems resulting in a new far stress distribution. 

    
Fig. 3. Logarithmic plot of the effective stress showing that   is proportional to the similarity 

variable R  

The configurations of the totally damaged zone governed by the new far stress field are found and 

analyzed. The new far field stress asymptotics can be interpreted as the intermediate asymptotic 

valid for times and distances at which effects of initial and boundary conditions on the stress and 

damage distributions are lost. Higher order fields for damaged nonlinear antiplane shear and tensile 

crack problems are analytically derived. The higher order fields obtained permit the shape of the 

totally damaged zone modelled in the vicinity of the crack tip to be determined more exactly. The 

similarity solutions obtained can be further used in more general multiscaling models in crack tip 

mechanics which develops multiscale methodologies of crack tip description [15]. 
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