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Abstract.  

Cohesive modelling provides a more detailed understanding of the fracture properties of adhesive 

joints than provided by linear elastic fracture mechanics. A cohesive model is characterized by a 

stress-deformation relation of the adhesive layer. This relation can be measured experimentally. 

Two parameters of the stress-deformation relation are of special importance; the area under the 

curve, which equals the fracture energy, and the peak stress. The influence of temperature of these 

parameters is analyses experimentally and evaluated statistically for two structural epoxy adhesives 

in the span from of -40°C to +80°C. The adhesives are used by the automotive industry and a 

temperature span below the glass transition temperature is considered. The results show that that 

temperature has a modest influence on the adhesives Mode I fracture energy. For one of the 

adhesives, the fracture energy is independent of the temperature in the evaluated temperature span.  

In mode II, the influence of temperature is larger. The peak stresses decreases almost linearly with 

an increasing temperature in both loading cases and for both adhesives.  

 

 

Introduction  

The automotive industries are striving to minimize the weight of their products in order to reduce 

the fuel consumption and thereby the emissions. In addition, the manufacturers are facing 

requirements to improve the crashworthiness. This is often at the expense of an increased weight. By 

using lightweight materials such as aluminium or composites in the body structure and combine 

these with tough material, e.g. steel, at impact zones, a more optimized solution can be obtained. 

Today, the majority of body structures consist of alloyed steel sheets that are joined by spot welds. 

A disadvantage with spot welds is the difficulty to join steel with aluminium alloys. This has put 

focus on modern crash resistant epoxy adhesives that enable joining of dissimilar materials. When 

using adhesives in a body structure it is in terms of crashworthiness required that the adhesive layers 

remain intact during a crash. This secures that bonded material deform in a predicted mode to 

dissipate the kinetic energy safely.  

 

With cohesive modelling, a stress-deformation relation is used to characterize the strength of an 

adhesive layer. This is a constitutive relation on a structural length scale between the traction 

exerted on the interfaces of the adhesive to the adherends and the separation of the interfaces. The 

separation equals the deformation of the adhesive layer. In the sequel, this relation is denoted a 

stress-deformation law. Fig. 1 indicates peel and shear deformation. These are characterized by peel 

deformation, w, and peel stress, ; and shear deformation, v, and shear stress, . The success of this 

characterization is due to the high toughness of modern adhesives. With brittle adhesives, we can 

expect to have to model the details of the fields more accurately. 



 

 
Fig.1. Deformation modes with corre-

sponding stress and deformation of an ad-

hesive layer with initial thickness t. Left: 

Mode I, peel. Right: Mode II, shear. 

 

 
Fig.2. Stress-deformation relations for an 

adhesive layer. 

 

The strength of adhesively bonded multi-material build-up structures can be adequately predicted 

using cohesive modelling and the finite element method, cf. e.g. [1]. This modelling provides a more 

detailed understanding of the fracture properties of adhesive joints than can be achieved with 

fracture mechanics. Methods to measure the cohesive properties in Mode I, II and in mixed mode 

loading are summarized in [2]. Typical stress-deformation relations are shown in Fig. 2. Two 

parameters of these relations are of special importance; the area under each curve which equals the 

fracture energy and the peak stress.   

 

An automotive body structure is required to fulfil its requirements at all working temperatures. The 

relevant areas of a car body for which adhesives are of interest normally suffers the temperature 

range -40°C ≤ T ≤ 80°C. Some studies of the influence of temperature have been performed. In [3] it 

is shown that the stress-deformation relation for the epoxy adhesive DOW Betamate XW 1044-3 

(DB1044) is strongly temperature dependent in Mode I. In this study, the entire stress-deformation 

law is evaluated at seven equally distributed temperatures with ten repeated experiments at each 

temperature. In [4] it is shown that the fracture energy for an structural epoxy adhesive decreases in 

the temperature region 0.7 < T / Tg < 1.0, where Tg denotes the glass transition temperature. For most 

epoxies it is about 100°C. Furthermore, it is shown that the yield strength decreases with increasing 

temperature and increases with increasing strain rate. In [4], the fracture energy is determined using 

an unstable specimen and the experiments are evaluated using linear elastic fracture mechanics 

(LEFM). That is, the entire cohesive relation is not captured.  

 

Cohesive models are implemented in finite element software to simulate the behaviour of adhesively 

joined structures. To perform these analyses considering temperature, the temperature dependence 

of the adhesive layer has to be taken into account. The previous studies do not provide all the 

necessary data and therefor a cohesive model cannot yet be established. This implies that new 

experiments need to be performed. An adhesive that is of current interest by the automotive industry 

is the crash resistant epoxy SikaPower498 (SP498). In this work, temperature studies are performed 

on this adhesive in Mode I and Mode II. Statistical methods are used to evaluate the influence of 

temperature on the two important parameters, peak stress and fracture energy. Moreover, the results 

in [3] are re-evaluated using statistical methods. 

 

Methods 

The two most frequently used test specimens to measure Mode I and Mode II fracture properties for 

adhesives are the double cantilever beam (DCB) and the end notched flexure specimen (ENF) cf. 

Figs. 3 and 4, respectively. These specimens are used in the studies in [3] and [4]. The specimens 
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each consist of two adherends that are partially joined by an adhesive layer. The part of the 

specimens that is not joined by an adhesive layer is considered as a crack, and the start of the 

adhesive layer is denoted the crack tip.   

 

 

Fig.3. Deformed DCB test specimen with out of plane width b. 

 

For the DCB specimen the adherends are separated by a prescribed deformation  and the reaction 

force, F, is measured. The stress-deformation relation for the DCB specimen is given by Eq. 1 in 

which J is derived either by using beam theory, cf.  [5], or by using the path independent J-integral, 

cf. [6]. 
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where, θ is the rotation of the loading points and b is the specimen width. 

 

 

Fig.4. Deformed ENF test specimen with out of plane width b. 

 

A properly designed ENF-specimen gives almost a state of pure shear at the crack tip. A recently 

developed method to measure J for the ENF specimen is presented in [7] and is validated showing 

good agreement to input data using finite element analysis in [8]. From this method the stress-

deformation relation of the adhesive layer is given as 
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where F denotes the load, η is the distance between the left support and the loading point, b is the 

specimen width and θ1, θ2 and θ3 are the rotations at the three supports. These are considered 

positive when increasing clockwise, cf. Fig. 4. Eqs. 1 and 2 provide the entire stress-deformation 

relation of the adhesive layer for each mode, respectively. In neither of these methods the 

constitutive properties of the adherends need to be known. Furthermore, both methods allow for 

plastic deformation of the adherends as long as no unloading from a plastic state takes place. 

Unloading from a plastic state would invalidate the path-independence of the J-integral used to 

derive Eqs. 1 and 2. 

 

Regression analysis is used to evaluate the temperature dependence of the peak stress and the 

fracture energy; collectively denoted response variables, y. Simple models for the influence of the 

explanatory variable x1 are given by a linear and a second order model, i.e. 

 

.011   xy    .0112

2

1   xxy   (3a, b) 

 

In this study, the only explanatory variable is the temperature; ε is often denoted the disturbance 

term. The parameters β2, β1 and β0 are to be estimated using the least square method. A major 

assumption in this method is that the explanatory variable is measured without errors. That is, the 

temperature is assumed to be measured exactly. If the influence of both │β2│and│β1│is small, the 

response variable is considered independent of the explanatory variable. The coefficient of 

determination R
2
 is often used to indicate if the fit is good; if R

2
 equals 1, all data points are on the 

fitted curve. On the other hand, if there is no dependence of the response variable on the explanatory 

variable, R
2
 equals zero cf. e.g. [9]. 

 

Another way of analysing dependence, not assuming a normal distribution, is to use a non-

parametric rank test such as the Kruskal-Wallis test, cf. [10]. This one-way analysis of variance of 

ranks enables testing several populations against each other. If the number of samples of each 

population is large enough, a certain test variable K can be assumed to be chi-square, χ
2
-distributed. 

If 2

1 gK   the medians of each population are assumed equal. The value 2

1g  is determined to give 

a certain probability. Thus, indicating that there is no dependence of the explanatory variable. The 

procedure and notation is described below. All observations are first ranked independent of the 

temperature. That is, the smallest value is given the rank 1; the second smallest is given the rank 2 

and so on until the largest value is given the rank n equal to the total number of observations. All 

observations are then grouped in samples corresponding to the temperature. This gives g samples 

corresponding to the g temperatures. In each group, the average rank of the observations in each 

group is calculated, ir , where i = 1,2,…g. With ni equal to the number of observations in sample i, 

the test variable K is calculated according to  
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Using a table of the 
2

1g -distribution, the probability that the medians are equal is estimated. More 

formally, the null hypothesis that there is no difference in the response variable between the samples 

is rejected if
2

1 gK  . With a 5 % risk of rejecting the null hypothesis even if it is true, we need K 

smaller than 9.49 with five evaluated temperatures; with seven evaluated temperature we need K 

smaller than 12.59. This risk is denoted the level of significance. 



Experiments 

Two experimental set-ups for the performed experiments are shown in Fig. 5. Here, the climate 

chambers are not shown. With the DCB testing machine, two crossheads are separating the load 

points on both sides with a prescribed loading rate, 10 µm/s. This is slow enough to consider the 

test quasi-static. In these experiments, the crack tip separation, w, as well as the load point 

displacement, Δ, are measured using linear variable differential transformers (LVDT). The rotation 

of the loading point, θ, is measured using an incremental shaft encoder and the load, F, is measured 

using a load cell. Only the rotation of one of the adherends is measured and it is assumed that the 

specimen deform symmetrically. This assumption has been tested in earlier experiments and found 

to give sufficient accuracy. An external climate chamber is used for the temperature span -40°C ≤ T 

≤ 80°C. The experiments are performance identically as in [3] with exception for the number of 

evaluated temperature intervals.  

 

 
Fig.5. Experimental set-ups with deformed specimens. Left: DCB test rig. Right: ENF test rig. 

 

For the ENF set-up, a servo hydraulic test machine is used. The load acts at η = 0.7, cf. Fig. 4 and 5. 

Two LVDTs for measurements of each rotations, θi, and one LVDT for measuring the shear 

deformation, v, are used. The load point displacement, Δ, is also here given a prescribed loading 

rate, D = 3.8µm/s, slow enough to be considered the test as quasi-static. The aim is to test the 

adhesive at the same temperatures as in the DCB-experiments. However, the climate chamber has a 

lower limit of -30 °C. Thus, -30 °C is the lowest evaluated temperature for the ENF experiments. 

 

The adherends of the specimens are made of the Uddeholm Rigor tooling steel that, according to 

tensile tests, allows for engineering strains up to 14 % before plastic straining start, cf. [8]. The 

thickness of the adhesive layer is nominally t = 0.3 mm for all specimens with SP498 and t = 0.2 

mm for the DB1044 adhesive. The DCB specimens has the dimensions in mm, L = 160, a = 80, h = 

6.5 and b = 5, cf. Fig. 3. The ENF specimens has the dimensions in mm L = 200, a = 70, h = 10 and 

b = 10, cf. Fig. 4. In order for the J-integral to be valid the stresses in the adhesive layer at the right 

end of the specimen, cf. Fig. 4, needs to be negligible. Therefor an overhang of 50 mm is used for 

the ENF specimens, cf. Fig. 5. Also in order to ensure that the ENF specimen remain on the support 

during deformation, an overhang of 20 mm is used on the left end. This gives the total specimen 

length of 270 mm.  
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Evaluation and results 

From the experiments, stress-deformation relations like the ones in Fig. 2 are obtained using Eqs. 1 

and 2. For each experiment, the two parameters fracture energy, Jc, and the peak stress, are 

presented in Fig. 6. The results of the DB1044 adhesive in [3] are also included in this evaluation. 

The DB1044 adhesive have significant lower fracture energies than the SP498 adhesive. During 

manufacturing of the specimens, air bubbles may arise in the adhesive layer. In order to justly be 

able to compare two different adhesives, all specimens are carefully investigated after the 

experiments. If an adhesive layer contains air bubbles in the region close to the crack tip, it is 

excluded from the evaluation since it affects the measured fracture energy. 

 

From Fig. 6 it is concluded that the peak stresses decrease with an increase in temperature for both 

adhesives, both in Mode I and in Mode II. Regarding the fracture energy, indications that the 

fracture energy is independent of temperature in Mode I are given in Fig. 6. This result is however 

not observed in Mode II where the fracture energy clearly decreases at temperatures above 50°C 

which corresponds with the observation in [4]. 
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Fig.6. Experimental results. Top: Mode I loading. Bottom: Mode II loading. Left: Fracture 

energy. Right: Peak stress. The solid lines combine the mean value of each temperature group. 

The dashed and the dashed-dotted lines show the results of a first and a second order regression 

analysis, respectively. 

 



By performing regression analyses, the estimated trend with respect to the temperature are 

calculated by the least square method, cf. Fig. 6. The estimated coefficients of regression in Eq. 3a 

and Eq. 3b are presented in Table 1 where the temperature in centigrade has been used.  

 

Mode I. The top graphs in Fig. 6 show the results from Mode I loading. As shown, the first and 

second order regression curves virtually coincide for the fracture energy of both adhesives. For 

SP498 R
2
 is very small indicating that there is no dependence of the temperature on the fracture 

energy. This is supported by K = 6.04 in the Kruskal-Wallis test at the 5 % level of significance. 

Thus, it is safe to state that the fracture energy in Mode I does not depend on the temperature in the 

tested interval. For DB1044, there is a slight influence of the temperature. We get K = 31.2 and 

would have needed a value below 12.59 with the present level of significance. The mean values of 

the Mode I fracture energies are µSP498 = 2.68 kN m
-1

 and µDB1044 = 825 N m
-1

 for the SP498 and the 

DB1044 adhesive, respectively.  

 

The peak stresses decreases with increasing temperature. For SP498, a linear regression curve gives 

a good fit; for DB1044 a parable fit the data accurately, both with R
2
 values near 0.9. 

 

Mode II. The bottom graphs in Fig. 6 shows the results from Mode II loading for SP498. The 

fracture energy as well as the peak stress cannot be considered as temperature independent. The 

Kruskal-Wallis test gives K = 10.3 and a value below 9.49 would be necessary with the 5 % level of 

significance. The second order regression analysis predicts a continuous decrease in fracture energy 

with respect to the temperature. However, with a small R
2
 value (0.35). Both a linear and a second 

order regression curve give high R
2
 values for the peak stress.  

 

Table 1. Estimated coefficients of regression and test value, K. 
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Mode  

I 

DB1044 
3.19 -491 32.0 0.85 

31.2 
-25.3 0.37 0.88 0.55 a) 

- -345 34.3 0.76 - -1.53 0.86 0.39 b) 

SP498 

-1.08 -270 50.6 0.88 
6.04 

-1.91 1.28 2.93 0.05 a) 

- -312 48.8 0.87 - 1.21 2.93 0.05 b) 

Mode  

II 

-2.24 -426 38.1 0.82 
10.3 

-0.10 -22.8 9.62 0.35 a) 

- -325 40.5 0.78 - -27.4 9.50 0.35 b) 

a) Second order regression analysis  b) Linear regression analysis 
 

It is also interesting to note that the linear models for all peak stresses have about the same slope, i.e. 

1
€  varies from about -310 to -350 kPa °C

-1
. 

 

Conclusions 

Within the evaluated temperature interval, -40 ≤ T ≤ 80 °C, the evaluation show a temperature 

independent Mode I fracture energy for SP498. For DB1044, there is a small influence of the 

temperature in Mode I. However, the influence is so small that it is reasonable to ignore the 

influence for engineering purposes. There is an influence of the temperature on the fracture energy 

in Mode II with a decrease in fracture energy with an increase in temperatures. The peak stresses 



decreases almost linearly with increasing temperature for both epoxy adhesives and for both Mode I 

and II for SP498. 
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